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SUM{ARY

This report is the second summary report issued under Contract
Nonr 611(00), Amendment No, L, entitled !Studies Relative to the Development
of a One-lan Helicopter'!. This contract was sponsored jointly by the
Office of Naval Research and the Office of the Chief of Transportation,

Ue. S. Army. The primary purpose of the program authorized under the
Contract is to carry out studies and make recommendations regarding the
design of various components of a one-man helicopter.

The first report, Hughes Aircraft Company Report No, EX-O-l, is
concerned with missions and feasible configurations for the one-man heli-
copter. It is pointed out in Report No, EX-O~1 that the configurations
having the lightest airframe weight are those powered by tip-mounted engines.
It appears likely that portability with these machines will be marginal,
even with fuel tanks empty. It does not appear that either the tip=-powered
machine carrying fuel for 10 nautical miles, or the gear-driven machine
without fuel, will be portable items. In the tip-powered configurations
the lightest airframe weights are indicated for machines powered by the
rocket or ram rocket: these are most likely to be portable (with tanks
empty).

It must be emphasized that the solution to the one~man helicopter
problem depends primarily on development of a suitable powerplant, and that
to date there is no known acceptable powerplant in the ratings required
(30-35 hp for tip drives, LO-60 hp for geared drives). Thus a development

program for the one-man helicopter must include powerplant development.
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In partial fulfillment of the purposes stated above, this report
presents the results of studies concerning performance, flying qualities,
and owerplants and fuels. For convenience in evaluating proposals, and
for he assistance of designers not familiar with the state of the art, data
fre . several sources, much of which is not new or novel, is collected for
p. . :ntation herein. For the most part the studies are concerned with tip-

=red configurations.

From the standpoint of best range it appears that the optimum disk
loading is about 2 psf, With the rocket powerplant, cruising fuel rate
‘mproves as tip speed is increased (with corresponding reduction in blade
solidity ratio), but the practical limit appears to be reached at a tip speed
of about 750 fps and a solidity ratio of ,018. It is, however, recommended
that tip speed be limited to about 600-650 fps and minimum solidity to about
«020=,025, The gains resulting from further optimization of tip speed and
solidity do not appear to be justified in view of the mechanical and structural
problems which develop in the rotor and propulsion systems,

A two-bladed rotor is recommended, where tip~mounted powerplants are
used. Experience with current small helicopters using tip drives indicates
that isolation from either vertical or in-plane vibration is not required.

The combination of tip weights and horizontal tail appears to provide
acceptable flying qualities, in both hovering and forward flight. An addi=-
tional argument in favor of the tip-drives is the provision of tip weight in
the form of powerplants.

Hovering flying qualities obtained by the use of the control rotor or

gyroscopic stabilizing bar are likely to be somewhat better than those

" GONFIDENTIAL

[T

b



Toinsnl

t}.\_

[Y—
1

C[]NHDEN”AI_ Report No., EX-0-2

obtained by tip weights, especially of the order represented by rockets.
Howvever, these devices may not suffice alone to produce adequate maneuver
stability at high speed (order of 70-8C mph) or to provide the normally
desirable characteristic of stick position stability in the range of cruising
to maximum speed,

Some provision for directional stability and control is required. A
vertical tail is adequate in forward flight, but probably not in hovering,
especially after flare-out to land., To insure adequate directional control in
low-speed flight a small tail rotor is required. A tail rotor that is ade-
quate for control, however, may not provide adegquate directional stability in
forward flight.

Flapping-hinge offsets improve the hovering flying qualities, but
diminishing returns are obtained for offsets greater than about 3 inches when
tip drives or suitable tip weights are used. Increase in maneuver stability

due to flapping hinge offset diminishes with increasing forward speed, and

in addition to a steady flapwise hub moment, hinge offset produces a vibratory
flapwise hub moment at n times rotor frequency, where n equals number of
blades, Use of hinge offsets with tip~mounted drives appreciably reduces
blade flapping required for trim, and may be necessary if large c.g. travel

or acrodynamic pitching moments develop, In general, it appears that

flapping hinge offsets should be avoided, if possible. Lag hinges are

quite undesirable in the case of tip-~mounted powerplants, Since it is diffi-
cult to maintain thrust balance between blades, dynamic unbalance may result
in a 'ground resonance! type of vibration. !'Chugging! of the engines due to

combustion instability may accentuate this problem.
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The development of a satisfactory rotor speed governor presents a
difficult problem, This unit, in addition to being light, should also be
rechanically simple, sufficiently rugged to be reliable under battle condi-
tions, and be stable under all power=-on operating conditions. In the case
of the one-man helicopter a more feasible solution is tlie coupling of
collective~pitch and throttle controls: a possible schedule is presented in
this report. It must be noted that neither the speed governor or the pitche
power schedule will function under power-off conditions, and the latter may
not function under off-design conditions.

From the standpoint of performance, cost and logistics (particularly
safety and availability) it appears that ethylene oxide represents the most
attractive monopropellant fuel. The use of hydrogen peroxide as a rocket
fuel, especially in connection with the one~man helicopter, is not recommended.
The specific impulse (1b thrust/lb fuel/sec) of hydrogen peroxide is about
207 less than that of ethylene oxide. The characteristics of hydrogen neroxide
are such that a leak in the fuel system is likely to result in a fire, and
handling of the fuel in military operations, by other than highly skilled

personnel, presents a constant hazard,

Limited tests on the ram-rocket indicate that satisfactory mixing and
burning may be obtained with length~diameter ratios of the order of 3:1, such
as would be structurally suitable in view of the high centrifugal loading.

A lengthy development program would be required to develop the ram-rocket for

application to tip drive.
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NOTAT ION

section lift~curve slope, dCl/aa

total equivalent parasite flat plate area, sq £t (Based

on C, =1,0)
dn

mumber of blades in rotor

brake specific fuel consumption, 1b/hp/hr

blade chord, ft

blade section minimum drag coefficient

blade section lift coefficient. Subseript 'max! refers to
maximum 1ift coefficient

mean rotor lift coefficient = 6CT/b

thrust coefficient = -—-%—-??

pTR VT
torque coefficient = 35

prR VT
horsepower
An/w
fuel rate coefficient for jet drives: Kf = %’%ﬂi . v?r.-. o V:.T
fuel rate coefficient for geared drives: K = PO HP =

s 00 V%
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P/L

rhp = Pr

(r/C)

(r/D)

TSFC

3

helicopter drag-lift ratio = 550 np/N W . Subscripts ‘o,
'it, and 'n* refer to profile, induced and parasite
drag=1ift ratios respectively.

dynamic pressure = %- v2

net rotor horsepower required
radius to blade tip, ft

rate of climb, fpm or fps, Subscript 'v'! refers to vertical
rate of climb,

rate of descent, fpm or fps, Subscript 'v! refers to vertical
descent

thrust specific fuel consumption - 1b/ib thrust/hr

rotor thrust force, vector normal to tip path plane, positive
when directed upward

rate of descent in forward flight., Also denoted by (R/D).

forward flight velocity, fps, mph or knots
rotational tip speed, fps

gross weight, lbs

disk loading, psf

angle of attack of airfoil section. Angle between chord line
and relative wind, degrees or radians, Positive when
chord line in inclined upward with respect to relative
wind.
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angle of attack of blade element at x = r/R and azimuth
station V¥ . Subscript '(1.0)(90)' refers to the blade
tip at ¥ = 90° .,

%1.0)(90) 2 %1,0)(270) TeSPectively

blade pitch, degrees or radians., Angle between rotor disc pla :
and zero 1ift line of blade section. Positive when zero
1ift line lies above rotor disc plane.

collective pitch at blade root, degrees or radians, Steady
term in Fourier series expressing 6 .

lateral component of swash plate (cyclic) feathering. (Angle
between plane of swash plate and rotor disk plane, viewed
along lateral axis from azimth 270°, positive when ad-
vancing edge or rotor disc plane lies below swash plate
plane,) First-harmonic term in Fourier series expressing 6.

blade geometric twist, degrees or radians. (4ngle between zero
1ift lines of blade root and tip sections. Positive when
zero 1ift line at tip lies above zero lift line at root.)

tip speed ratio = VF/VT

mass density of air, slugs/cubic ft

robtor solidity ratio = 1-12‘%

be
rotor solidity ratio based on root chord = -ﬁ-(-’-

azimuth angle, degrees or radians, Positive in direction of
rotation, measured from downstream end of fore~aft axis,

rotor angular velocity, radians/second or rpm
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Stability and Control

o

I

Lock!s factor = Eﬂ%%-

rotor blade damping coefficient = /16
. . . ack:
control rotor damping coefficient = EH::-

gyroscopic bar damping coefficient = B/?Iim

rotor angular velocity

helicopter natural pendular frequency for rotation about

gyroscopic bar damping coefficient

helicopter radius of gyration about c.g., including rotor mass
concentrated at rotor center

blade flapping hinge offset, inches or feet

nass morent of inertia of rotor blade about its flapping hinge,
slug—ft2

mass moment of inertia of helicopter about lateral (pitching)

axis through c.g., slug-ft2

mass moment o inertia of helicopter about rotorshaft axis, slug-ft2

mean radius of control rotor paddle

For explanation of other syrbols used in Seotion II

refer to nomenclature of Reference 18,
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INTRODUCT ION

This report is the second summary report issued under Contract
Nonr 611(00), Amendment No. L, entitled !'Studies Relative to the Development
of a One-Man Helicopter!, This contract was sponsored jointly by the Office
of Naval Research and the Office of the Chief of Transportation, U, S. Army.
The primary purposs of the program authorized under the Contract is to carry
out studies and make recommendations regarding the design of various com-

ponents of a one-~man helicopter.

The one-man helicopter is defined as follows in the Statement of Work
of Reference 1:

", . . the smallest rotary wing type aircraft which
will:
(1) transport one man
(2) have satisfactory flight characteristics
(performance, stability, and control)
(3) accomplish a basic mission to be defined
(1) have a minimum of instrumentation and means
for automatic maintenance of proper rotor
speed and collective pitch for all flight
conditions
(5) be simple, cheap, capable of rapid assembly
and insensitive to poor servicing and exposure

to weather.!
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In addition to the above it is desired that the machine shall be easily trans-
portable, and if possible, portable by one man,
Items (1) and (3) are dealt with at some length in the first summary
report, Reference 3. Items (2), (L), and (5) are discussed herein,
The purposes of this report are:
(a) Establish suitable criteria for selection of rotor
and powerplant config..ations.
(b) Sumarize the results of studies based on these
criteria.
(c) Establish suitable minimum requirements in terms
of flying qualities.
(d) Determine the feasibility of achieving these
requirements in terms of practical weight and
cost,
(e) Sumarize existing information regarding power=-
plants and fuel suitable for the one-man helicopter.
For convenience in the evaluation of one-man helicopter proposals, and
for the assistance of designers not familiar with the state of the art, data
from several sources, much of which is not new or novel, is presented herein.
Wherever possible this data is surmarized in a form convenient for use in
optimization studies. Examples are the data on vertical flight (Figures
L, 5-and 6), and on airfoil characteristics (Figures 1} and 15).
In Reference 3 it is pointed out that the lightest airframe welghts
are obtained with configurations using tip-mounted powerplants, and, there=

fore, that these configurations are the most feusible from the standpoint of

of transportation by one man., This report is, therefore, most concerned with
studies relative to tip-driven configurations.

o CONDENTA
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SECTION I - PERFORMANCE CONSIDERATIONS REGARDING SELECTION
OF ROTOR SYSTEMS

1. Selection of Configuration - General

It is emphasized that selection of a rotor configuration for the one-
man helicopter is closely allied to selection of a powerplant., It is also
noted that,in general,development of a one-man helicopter involves develop-
ment of a powerplant, since in most possible configurations a sultable power=
plant does not at this time exist,

As an introduction to the discussion which follows, a brief review of
missions and configurations, reported in Reference 3, is presented below.

Various investigators have proposed the following one-man helicopter
configuratio :

a, Tip=-Mounted Powsrplants

Monopropellant liquid rocket
Monopropellant solid rocket
Ramjet

Pulse jet

Ram rocket

b. Geared Drives

Reciprocating
Gas turbine
Monopropellant turbine

c. Jump Take=-Off and Gyrodyne

Solid rockets for climb, autorotation in forward flight.

Same as above, but with propeller driven by reciprocating
engine to maintain cruise flight (gyrodyne cone
figuration).

d. Ducted Propeller (possibly with pilot located above rotor or rotors)

CONFIDENTIAL 1
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e. Rotor Arrangements

Single rctor
Coaxial

f. Tsil Rotor

Tajl rotor for anti-torque and control
Tail rotor for control only (tipemounted drives)

Reviewing Reference 3 briefly, it appears that airframe weights of the
order of 100 1bs or less can only be achieved by the use of tip~mounted power-
plants. Items (b) are eliminated, unless empty weights of the order of 200
1bs are acceptable. In the case of Items (c) the jump take-off autogyro
cannot maintain level flight at low forward speed and in hovering, while the
solid rocket does not permit of power control once started: the gyrodyne
configuration is not portable, due to combined engine, propelier and airframe
weight if adequate power is provided,

Item (d) is not feasible for the one=man helicopter dues to the extremely
high disk loadings required, The arrangement with pilot above rotor or rotors
also appears to have poor flying qualities compared to conventional arrange=-
ments.

Referring to Items (e), only single rotor arrangements are considered,
The main function of the coaxial system is to overcoms the torque problem of
the geared drives; since geared drives are not considered feasible from the
standpoint of portability, the coaxial need not be considered, Even if
portability is disregarded, the coaxial has the additional disadvantages of
mechanical complexity and reversal of yaw control in autorotation. From the
standpoint of performance and fabrication the single rotor configuration is
superior to all others.

2 CONFIDENTIAL
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Items (f) are presented here to call attention to the fact that a
control tail rotor may prove necessary even with the tip drives. Even if
the directional control requirements of Rererence 15 are waived (and they
cannot, in general, be fully met by a fin and rudder), conditions immediately

after flare-out and when hovering in gusting winds may require a small tail
rotor for safety.

2., Comparison of Configurations having Tip-Mounted Powerplants

a. Discussion

Again it is noted that for most, if not all, configurations suitable

powerplants for the one-man helicopter have yet to be developed.

A major point in favor of tip-mounted powerplants is the fact that the
large contribution of the powerplant to rotor moment of inertia increases the
damping in pitch of the helicopter., This results in two desirable effects:

a reduced rate of control response in hovering, and an increase in energy

available during the flare-out to land. Thus the hovering flying qualities

are improved by the addition of the tip powerplants: however, as pointed out

in Reference 17, damping in pitch due to the rotor is reduced as forward
flight speed is increased. In the case of a typical one-man helicopter
(without flapping hinge offset) rotor damping in pitch actually becomes de=
stabilizing at about 100 mph in level flight., Thus the contribution to
stability provided by the tip weights is reduced in forward flight, though the
reduction is less severe if flapping hinge offsets are provided. Since it

appears that tip~weights are highly desirable on small helicopters to reduce

their otherwise excessive control response and improve the flare characteristics,

the tip-mounted powerplants serve a double purpose.

o P
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It is often argued that the centrifugal relief due to tip weights
reduces blade bending moments, particularly flapwise, both steady and cyclic,
so that the increased centrifugal loading is partly compensated, Further
discussion of this point is presented in Paragraph I (5); however, it should
be noted that an increased steady stress level reduces the allowable cyclic
stress level for a given life, and that the tip weights modify the blade natural
frequencies and, therefore, either increase or reduce the blade response to

various harmonics of airload axciting forces, (In the case of current tip=
powered helicopters, blade chordwise stationary first mode frequency is low
- about 50-60% of rotor frequency, apparently with beneficial effects both on

blade stress levels and vibration transmitted to the hub,)

b, Some Comparisons of the Most Promising Tip-Mounted Powerplants
(1) Fuel Rates (1b/lb thrust/w in cruise)
Pulse Jet 7-9 (Gasoline or Kerosene)
Ramjet  10~12 (Gasoline or Kerosene)
Rocket 20=30 (Monopropellant Fuels)

(2) Starting

Pulse Jet: static start, using compressed air
and spark,

Ramjets rotor must be brought up to about
100 fps tip speed by some
mechanical means. Ram air plus
spark.

Rocket: static start, using decomposition

means (pressurization plus
catalyst or heat).
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(3) Autorotation Descent Rates (as affected by cold drag

Y

®)

(6)

of powerplant
Pulse Jet: increase about 50% - about 2200 fpm

Ranmjets approximately doubled = about 3000 fpm

Rocket: approximately conventional - about 1500 fpm

Large amount of kinetic energy in rotor available
in flare partly offsets disadvantage of increased
descent rates of Pulse Jet and Ramjet (See Figure 36).

Weight (1b/1b thrust)
Pulse Jet: 0,5 to 0.6
Ramjet: 0.3 to 0.4
Rockett 0.1 to 0,2

Cost and Complexity - data not available - probably in
increasing order as follows:

Rocket
Ramjet

Pulse Jet
Comments on Ram Rocket

This powerplant is still in very early stages
of development, and no operating hardware suitable for
use with a helicopter has been developed. Indications
are that fuel rates may be equal to or better than
those of the ramjet, with the advantage that a static
start may be obtained using the rocket thrust. Weight
probably aquivalent to that of a ramjet.

CONFIDENTIAL
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(7) Airframe Weights
Least with rocket and possibly ram rocket (informa-
tion on the ram rocket does not yet permit of definite
conclusions). Next in increasing order, ramjet, pulse Jet.
These results are due not only to relative engine weights,
but also to increased rotor solidities required by low
design tip speed (pulse jet) and low autorotational speeds
resulting from engine cold drag (ramjet).
(8) Tip Speeds
Pulse Jet: tip speed limited to about LOO fps by
operational characteristics of

engine

Ramjet: tip speed limited by functioning and
structural limitations of engine

Rocket: tip speed limited by overall rotor
efficiency

3. Choice of Number of Blades

There appears to be no reason for using more than two blades when tip=
mounted powerplants are used, Three or more blades have been used to reduce
the level of vibration transmitted to the hub from the rotor, However, small
pulse jet and ramjet helicopters having teetering two-bladed rotors have
operated successfully for considerable periods of time. Obviously, the mumber
of tip powerplants and complexity of fuel system should be kept to a minimum.

The in~plane vibration which has appeared in transition from hovering
tc forward flight in gear-driven helicopters having teetering two-bladed rotors
does not appear to be a problem in the tip~drive configurations., In current

6 CONFIDENTIAL
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tap=driven machines, chordwise first mode stationary natural frequencies of
the engine~blade combination are relatively low (about 50-60% of rotor fre=-
quency). This may be the reason for the reduced in-plane vibration.

In the case of the gear-driven one-=man helicopter thers may be some
argument in favor of using three or more blades to avoid the need for isolation
of rotor and power system from the pylon.

While the use of a single~blade counterbalanced rotor offers some
simplification of the upper control system, it results in increased weight of
the rotor svstem. Obviously, blade area camnot be reduced, so the single
blade must be larger and heavier than one blade of a two=bladed gystem: in
addition, the counterweight will be heavier than the blade. With two engines
level flight may be maintained on one engine with rocket or pulse jet: due
to its cold drag, the ramjet probably cannot maintain level flight on one
engine, but descent rate can be greatly reduced compared to power-off condition.

Obviously, with one blade (and consequently one engine) this advantage is
lost,

L. Choice of Rotor Geometry

a, Fuel Rate Coefficient as a Criterion

The airframe weight is proportional to the gross weight, and in the tip=-
driven helicopters,the fuel consumption of which is high, gross weight in=
creages rapidly with range., Meeting the requirement of portability with a
range of 7-10 nautical miles, even with empty tanks, presents a severe problem
in the case of the tip~driven helicopter, while portability does not appear to

be feasible with geared drives, It is suggested, therefors, that rotor geometry

CONFIDENTIAL 7
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for tip drive should be optimized primarily in terms of fuel consumption., As
a basis for optimization, a coefficient directly proportional to the ratio
of required tip thrust to gross weight, and inversely proportional to forward

speed, is suggested, This coefficient is denoted by Kf where:

T
Ke ( VFXW) AT * 3 lv-; ()

The coefficient Kf s while dependent only on the rotor configuration,

parasite flat plate area, and gross weight, may also be regarded as a measure

of fuel rate, since:

Fuel rate in 1b/n.miles = Kr(TSF‘C)(Groas Weight/100) (2)

In selecting a rotor configuration for each tip powerplant gonfiguration a
useful assumption for preliminary purposes is that TSFC does not vary with tip
speed, Over the useful range of cruising tip speeds corresponding to each type
of tip powerplant, this assumption is reasonable. (Typical TSFC values ares
20 1b/1b thrust for ethylene oxide rocket, 12 1b/1b thrust for a small ramjet.)

As shown in Reference 3, the gross weight is similar for all configura-
tions of the one-man helicopter with tip drive, for 10 nautical miles range.
Thus it appears reasonable, when making preliminary comparisons of rotor systems
in terms of optimum fuel rates (and, therefore, of range, gross weight, and
airframe weight), to regard Ko as the most important variable in the above ex-
pression for fuel rate in 1lb/n.mile. Thus K. is seen to be an important
ceriterion for optimization of rotor geometry for best range in the tip—-driven
one=man helicopter configurations.
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The use of K, asa criterion for selection of rotor configuration leads -
to the following conclusions, as pointed out in more detail in later paragraphs:

(1) The minimum K, occurs at a speed of, or close to, L5 knots
for all values of rotor geometry and fuselage drag that are practical
for the one-man helicopter.

(2) A disk loading of 2 psf is close to optimum over a large
range of solidities and tip speeds. A disk loading of 2 psf is also a
good compromise from the standpoints of reasonable values of rotor
radius and vertical power-off descent rate.

(3) The optimization of tip speed and solidity appears to afford
relatively small reductions in Kf at tip speeds above about 600 fps,

at the same time introducing mechanical problems due to the small chord

of the blades and the probable necessity for a large amount of blade

twist,

It is felt that the geared drives are not portable, However, as a

matter of interest, optimization charts are presented in terms of KS s which

is directly proportional to the ratio of horsepower required to gross weight,

and inversely proportional to forward speed:

EHPE 1
Ks = . v; (3)

As in the case of B% s the coefficient Ka may be regarded as a measure of

fuel rate for gear-driven helicopters, since:

Fuel rate in 1b/n. mile = KS(BSFC)(GTOSS Weight/100) (L)

CONFIDENTIAL 5
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It is of interest to note, when Ks is used as a criterion, that con-
clusions (1) and (2) also apply to geared drives. However, in contrast to
conclusion (3), optimization is in the direction of reduced tip speed and in=
creased solidity with geared drives,

b. Choice of Disk Loading

(1) PFuel Rates in Cruise

Figure 1 presents curves of K. at L5 knots versus
¢ for selected disk loadings at two values of tip speed
and flat plate area ratio K = A M. (Values of K

of ,015 and ,020 represent effective parasite flat plate
areas An of 6 and 8 square feet respectively, values
which are representative of the one-man helicopter.) For
all optimum configurations of the one-man helicopter, the
speed of L5 knots is very close to best cruising speed.
From the standpoint of comfort, it is also a reasonable
speed for the pilot when unfaired and unprotected from
the free stream,

It is seen from Figure 1 that, in general, a disk
loading of 2 psf results in values of Kf close to optimum,
A disk loading of 2 also results in reasonable values of
rotor diameter and autorotational descent rate.

Figure 2 presents curves of Ks versus solidity,
at a disk loading of 2 psf, for selected values of tip
speed and A, and for a cruising speed of L5 knots. It
is seen from Figure 2 that a disk loading of 2 psf also
gives values of Ks‘ that are close to optimum.

10 CONFIDENTIAL
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Vertical Descent in Autorotation

There is some question as to whether vertical power-
off descent rate is in any way a significant criterion,
since this rate 1s so high,even with quite moderate disk
loadings, that in the great majority of cases helicopters
make sautorotational descents in forward flight. It may be
that under battle conditions, with pinpointed landing areas,
vertical descent will sometimes be necessary, Some
coments follow regarding rate of vertical descent power=
off,

Over the conventional range of tip speeds (that is,
up to a Mach number of about ,7), vertical descent rate in
autorotation is a function of the disk loading, and is

given very approximately by:

(BD), = KV (5)

Figure 3 presents (R/D)V versus disk loading for values of
k equal to 27 and 28, with experimental points from un-
published data for a two-place gear-driven helicopter cur-
rently in service. It appears that k = 28 gives results
that are slightly conservative., For a ramjet helicopter
the vertical descent rate will be increased 30-L0%, and

the increase will be about half this for a pulse jet.

1o s i a2
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A disk loading of 2,0 with k = 28 gives a vertical

o |

descent rate of approximately LO fps. This appears to be

p—

a reasonable upper limit for the one-man helicopter, con~

sidering required reaction time and use of the feet for

landing,

(3) Power Required in Vertical Flight

’ ' The charts discussed in this paragraph present informa-

| tion which is available elsewhere in the literature. The
data is included for convenience in evaluating one-man
helicopter proposals, and for the guidance of designers
not familiar with the state of the art,

Figure L presents P M = (Net Rotor Power Required)/

(Gross Weight) versus CT/O in hovering out of ground
effect, at sea level, for selected values of disk loading,
tip speed, and solidity. For operating CT/o values of
.08 and greater, disk loading is the most important para=-

- meter, and Prm decreases with decreased disk loading.

Figures 5 and 6 present corresponding curves of
P M for rates of initial vertical climb of 500 and 1000

fpm respectively.

c. Iip Speed Voand Solidity Ratio, @

| It is desirable to discuss the influence of ¢ and V, together, since
the rotor profile power losses are directly proportional to ¢ and VT2 .
Furthermore, blade loading coefficient CT/° is dependent on these two variables.

(See discussion in Paragraph I.L.d.)
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(1) Fuel Rate in Cruise

Figure 7(a) presents K, versus tip speed for
selected values of solidity, and Figure 7(b) presents
Kf versus solidity for selected values of tip speed.
Both of the above figures are presented for a cruising
speed of L5 knots, a disk loading of 2 psf, and a
K. of .05, The line for V, = 850 fps on Figure

7(b) is shown dotted, since this curve was obtained
by extrapolation of the curves of Figure 7(a). It is
clear from Figure 7(a) that for tip speeds in excess of
600 fps, Kf remains approximately constant in the
range of solidities between .02 and .03, and increases
with tip speed for higher values of solidity. It is
seen from Figure 7(b) that solidity must be reduced well
below .02 to benefit from tip speeds above &0 fps. At
best relatively small reductions in Kf are indicated.
Even these small reductions may not be achievable in
practice due to mechanical difficulties in connection
with fairing of the engines on blades of the small
chords required,

Thus it may be concluded that reductions in fuel
rate resulting from optimization of tip speed and solidity

1lie in the region of diminishing returns, unless appre~

ciable decreases in TSFC result from increasing tip speed,
The following general statements apply concerning the
effect of tip speed on TSFC:
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TSFC of a rocket powerplant is independent of
tip speed,

TSFC of a pulse jet increases with tip speed,
being a minimum at static thrust.

TSFC of a ramjet decreases with tip speed.,
However, data is not available to analyze actual performance
of tip-mounted ramjets at speeds much in excess of 700 fps.
Limited tests with a tip-mounted ramjet at speeds in excess
of 700 fps resulted in failure of the shell: thrust and
noise levels prior to failure indicated the possibility

that the engine was operating as a valveless pulse jet.

A study has been made of the best fuel rate that may
reasonably be expectad from optimization of tip speed and
solidity for a rocket-powered system, taking into account
overall performance as affected by compressibility and tip

stall. The results of this study are summarized in Paragraph I,5.

(2) Performance Limitations

The following generally accepted comments regarding

tip speed are presented as a matter of interest:

(a) For a given rotor geometry, stall at the retreating
blade tip (¥ = 270°) is retarded by increase in tip speed.
(See Figures 18 and 20),

(b) The tip speed and maximum forward speed as limited by

drag divergence are related as follows:

PpTE——————
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V. +V

L (6
elicity of Sound in Air VS

(¢) Airfoil Sections which have unusually high values
of Mﬁd have relatively inferior maximum 1ift characteristics,
and are, therefore, generally not suitable for helicopter

applications.

An additional, and not generally recognized generalization
regarding tip speed is Item (d) below:

(d) Optimization of rotor geometry requires that o vary
as l/VT2 s S0 that blade cross-sectional area varies as
l/'V'Th . Thus the ratio (centrifugal load due to tip weight)
/(Blade tip cross-sectional area) varies as VT8 . It may,
therefore, prove necessary, on blades operating at high

tip speed to modify tip structure for attachment of the
powerplant, in such a way as to incresase profile losses.
Thus, some if not all the reduction in X, indicated by

£
theory may not be realized in practice.

Hovering at Altitude

As a matter of interest Figure 9 is presented to show
the variation of required solidity ratio with tip speed at
selected disk loadings to permit hovering out of the ground
effect at 3000 feet. The criteria are stall and drag
divergence at the blade tips. In the cagse of the blade
with no twist, both criteria are shown, and it is seen
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that for tip speeds up to 650 fps the solidities indicated
by both criteria are similar: for tip speeds above &50
fps the drag divergence criterion governs the choice of
solidity. In the case of the blade with =8° twist the
curves present the only critical values of required

solidity, whether due to drag divergence or stall,

d. Blade Loading Coefficient C./c

This coeffigient represents an important design parameter. For the
hovering rotor, the blade mean lift coefficient, represented by the value at

approximately 72% radius for the untwisted blade, is approximately given by:

clr - 6CT/° (7)

Helicopter perfermance is generally limited by tip stall and compressibility,
and is, therefore, sensitive to tip angle of attack. For this reason it is
current practice to design for a sea-level CT/° not to exceed about .08
at gross design weight, with overload operation about 25% greater,

Figures 10 and 11 illustrate the importance of CT/c as a design
parameter, Figure 10(a) presents maximum CT/o versus | based on blade
stall, Figure 10(b) presents the corresponding compressibility limitation on
the advancing blade tip, the criterion being M a4 from Figure 15. Figures
10(a) and 10(b) are for an untwisted blade. Figures 11(a) and 11(b) are for the
blade with ~8° twist. In Figures 10(a) and 11(a) stall is assumed to occur at
an angle of attack of 10°: as shown in Figure 1L, the maximum 1ift coefficient
decreases with increasing Mach number, and it is shown below that for tip speeds
and forward speeds which are reasonable for a one-man helicopter, a clmax of 1.0

CONFIDENTIAL 2
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(corresponding to 10° angle of attack at the blade tip) represents a reascnable
first approximation.

The vertical lines labeled C/VT in Figures 10(a) and 11(a) represant
drag divergence boundaries on the retreating blade: to avoid this it is
necessary to operate to the right of these lines.

As an example in the use of the charts, the following is presented as
typical for a one-man helicopter:

Gross Weight = LOO 1lbs
Disk Loading = 2 psf
Tip Speed = 600 fps

Tip-Speed Ratio at V (based on C/VT line,
by interpolation) = ,185
L (1imited by retreating tip drag

divergence) = ,185(600) = 110 fps
Horsepower required at 110 fps (Figure 17) = 28
PA = (28)(550)/(110)(L00) = .35

From Figure 10(a), for PA = .35 and p = ,185, the design CT/° based
on drag-divergence at the retreating blade tip = 0,072.

At a tip speed of 600 fps, a disk loading of 2 psf, and Cp/o of .072,
the resulting solidity required is:

C

T .
G-EVG'—g%%%-.OBZ
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The following is presented as a check on the assumed value of 10° for
blade stall angle of attack, and on the advancing blade tip Mach number ag a
criterion in selection of design CT/a :

Retreating blade tip Mach number at V . = 1= Riso) LUl
Advancing blade tip Mach munber at V. = 1+ {600 . g

From Figure 1L the Gy sy FOr @ Mach mumber of Ll is 0,96, This corres-
ponds, for a lift~-curve slope of 0.1/degree, to 9.6° angle of attack. Thus,
for preliminary purposes, the assumption of 10° is reasonable.

From Figure 10(b) the limiting M' gq 3t the advancing tip is .73, so
that the value of .64 1s not critical, Choice of design CT/° is thus
governed by drag divergence and stall on the retreating blade tip, both
occurring at the same tip angle of attack.

From Figures 11(a) and 11(b) it is found that with a blade twist of
-8%, a CT/° of ,090 is permissible, so that required blade solidity = .026,
The mechanical and aerodynamic problems associated with low solidity and with
blade twist may not justify this step, however., These problems are discussed

in Paragraph I.5,
e, DPlade Twist

The purpose¢ of blade twist (washout at tip) is to reduce blade tip angle
of attack, and thus retard stall and drag divergence. Theoretically, a linear

blade twist of ~-8° reduces blade tip angle of attack (compared to the
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untwisted blade) by approximately 2°. In practice, it appears that only
about one-half of the expected reduction occurs, at the critical forward
speeds and altitudes, due to a modification of inflow distribution re=~
sulting from the blade twist.

Blade twist may be used to effect the occurrence of stall and drag
divergence (on retreating and advancing blade tips) at the same forward
speed, thus optimizing rotor geometry to obtain maximum speed and/or ceiling.
It does not appear that any appreciable power savings in forward flight result
from the use of twist, though a saving of about 5% in hovering is obtainable.

Since the one-man helicopter is not a high-performance machine, op=~
timization of rotor geometry is desirable only in relation to range. In the
case of the rocket, ram rocket and ramjet, fuel rate may decrease as tip speed in-
creases, but with increasing tip speed the problem of drag divergence appears.,
It is then desirable to maintain the advancing tip angle of attack as close
to zero 1lift as vossible, Blade twist is the most effective means to achieve
this,

In addition to the manufacturing complication involved in accurately
building twist into a blade, it appears that there is a structural problem,
The effect of blade twist is to induce an appreciable first harmonic com=
ponent of airload,which may result in an increase in the steady and vibratory
stress levels on the blade. For these reasons it is desirable to avoid the
use of twist in the rotor blades of the one-man helicopter.

A discussion of optimization of blade geometry and tip speed to obtain

low fuel rates with a rocket powerplant is presented in Paragraph I.5.
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f, Minimum Power=Off Rates of Descent in Forward Ilight

Figures 12 and 13 present charts of estimated minimum rates of descent
for a one~man helicopter in forward flight. Figure 12 is presented for a
design CT/c of ,085, corresponding to autorotation at normal rpm. Figure
13 is presented for a design CT/O of .125, corresponding to autorotation at
minimum desirable rotor speed from the standpoint of adequate control and
rotor kinetic energy for flare.

The data is presented for three values of tip engine drag coefficient
cDj . These values are 0, ,10, and .20, representing clean blades, pulse jet,
and ramjet engines respectively. The rocket powerplant CDJ lies somewhere
between O and ,10, depending on the method of mounting the engine., The data
is based on the assumption that autorotation rates are increased from !clean
hlade! values 100% for ramjets and 50% for pulse jets. A tip-mounted rocket
in a 'tip tank' nacelle may increase autorotation rates about 53 to 15%.

Study of the charts indicates that minimum descent rates at a given
CT/O are obtained by use of low disk loading and low tip speed with high
solidity. However, at a given disk loading variation of VT and ¢ at
constant ‘CT/o has relatively little effect on descent rate, especially with

iclean! blades. Increase in operating CT/a , other things being equal,

results in reduced descent rate,

8. Design Considerations as Affected by Tip Stall and Compressibility

Effects

Rotor profile losses increase when the angle of attack for stall on the

retreating blade tip, or drag divergence on the advancing tip, are exceeded,

CONFIDENTIAL 2

T e st R o - e a4 e m—



CONFIDENTIAL

Report No. EX-0-2

CONFIDENTIAL

32

T - IOAENPRORINEBRNINNAsIRRRS JJM + W X <+ e 4
H : —— ; +{ 1 + t
H }
FAGEE +: T TH fsilany
T ea
YOI IO pug Som T AR
; 31 1133 HH S L IR
1 o gt o Ht L o
d : 3 : . HH S
4 : , ;
H
Fr 132 =i H
E-H T+
iaon ez i
T *v
4 H s i1
H 498 s
e T 2988 H
fHHEHTARE : 2 e
H it H baas Lm e s bons
T ¢ o jgousey 3+ +4- ase i e a AH EH
T wgwe b o 28 of 44 + 1t I¥ [+ H3
HifH 7 847 THEH i 1 sdy R i H ed3  HiH
H 3 Taes 11++1 ‘ + m“ bl &0 H u "ulll
24 HHEHL A R R T A, HELETE 55 HH Ry A, B
IRl ch el A LG . 3 A TR fot A BHE
y e pon T 1 1 H
i (2 pRas 118 ey 33 easat st H 3 L] Lk b A .
] a2t ({8 s Fi i T 33 T
124242331 W.ﬂw 5 s s B T3 ross os o5 33 ot
Th T y 1l tH i : sten ]
7 jas
s2s8e 9e g0e9 s 333328 nu« sie3hy m» 1L» f : sana foet 11T T 1
Sauge a3 ++ —~ - s P S BTs E3has sashsen 1 411 1 + pere 551
100 bE Fug podds ob L e S TR e : "
$CE Fatt{snst At eiotl ) (0 110L) $Redd SRS 1ea2Y kes AR j5iits St s il R il s
. o T . 1
e N i psﬁ.w& I3t LRt S fon8n ageqe 1ooes sEThS (hass pusal LASEY &8
Fecde ol Bassie b3s ahks pesispily ) Rduibiag pRedgsuty; redMPTiti i1fod bive H ] s83od sve i : B v ot T
+ > g T TR 1222 12332 B2 32 0e ) e SeT R CoaRY Sea s 2T
3 T [aaed E3ed1 o4 25312338 S0 BR LY e IR 1) S H PR S9ds roded Bt sy 3 ot
e 10 o (i canel B 1 I el M St el K 0% 5682 et podoe 15351 Lot
: Bl + SRty K BT s RERLS pioet $33) 101 7
: ; + - [t IR333d2ass 13 &3 Bheqs 15w Soobd 36N : 1 +
vm rrid SiLnRinniEirnmg ot 2251 I3T 220 WX
4 - . +- -t = ¥ + +
Y 1 The] fasas oo el Hote i 35 EpEes T8 B SR =
o 3% $3 s o308 teat: 3201 ISR 06030 ST 100N R4S e g 1np s 5 IR R el By Bt 13 FEEIELY
Sspe g B + s e beoel Lonss B30 PN I8 e -4 hods Bt RS 04 5§ 08 6 doany
T s e AR e e AL 350 Sgopy stoes 12 Shiseri ¥ B
. e fT et e by v -2 e $E13] Hi+¢ »L -y “7 «‘,Wf 1 o3 : - hw}t T 3 =
+ I poe b4 & R + ] po b SoEes pusga + - I
s e 2. t phify bhqut §odan hie i B33 o981t fac jonbe txuss ol +evidt 3+
2253 [Tect O Bodel Eoqni EU0E ptesd f¥e Nkl LM H E2088 sRif it [ 123 £27%4 ¥ e an b ets i)
= T
Saeay pROY S e PSS £=223 B2 20 M Iy Lh. b o 44 K > o T o = e e ds T
catd Dby SRR hang ISAEI R2ast oo 228 PERES PEeS Sned t 4+ T T + - ™
e 5251 ¢2 014 oPE2) brase Y22} bEFUb ERS el t0ar 130 03 E £ s ERt g gl <
5352 anad URiAMARARS A1 85 i) - r = = , T
t |2 S3RAD PR - .y IT + 33 3 ﬂaa g 1 1
E oz = 005 cqrq ara i £ QT" = 77D "d'd dId =R
sRi8l3s ) 1A.Mut;«L. : T I HHH 1§ SVVT EURII VPO sprgerte £}
1.0 T3 1580 padl HIagperpEgris i Lo bhetif T = ! e
LRI ey er;n S T i peeds dfg jUeqsuog et
- - by 8 4 ’ o B4 ssdue T+-] - Al
HER T SRR e i A Th 3358 JA2q1 pathideas: Sutpeo] }ST(I Uesuc) HEEE Dt
T 3352 £5300 CaTaT LoLC: so A an MMM . . pens s T
s antuin s k=l " Is i
222 Se3ay benas pyavs pagessuaes s as S80* = o/ 218 T
sesyseshs 5282 S3003 13 a) TR 20
7853 beths soegd fagus cetastafag L SINVIHUEMOd CEINNCH=dI L Qﬁb«m SYALJOJI'TIH Hod E 2
f1-v dye “frirrbeq . N £ -
§3% 123 0Eass Rsd pies Metd fede b DNIQVOT ASIC NV "ALIA S °*CIadS 411 HITM 1t peses toue! t
i e THeelt ) S 2es:
fyee: THET ERNEE PNSHIROTY B3 FOGE: OO AIVY INFEOS3Q TVNOIIVIOWIAY WARINIW JO NOILVIYVA Esdi 3588t SR i o
SEET3 S3L0 F0eTE (eheyd Bitds ol oy be- et st i
Hd A B e e s 3
[ - e e . e ———



Report No, EX-0-2

CONFIDENTIAL

T T R R T T P
£ HERIHE LI on
lEiE] €1 TunDId i A N e EER B MR e
144 +14 t 4 pagssake b 4w.' .‘H.w e [y & b b
D 1 hnm. - ) H ..M.j M.. _:. Hits HTu o +H 4 v 4
£ , g © ] e 0 el M
: HIHT B HT HHBIR =3 Hiha 1 |
£ . i PP Ll 4 it} |
ne -3+1 H4 441 |+ T+ X 4 3 .hu-m i
see H 288 1 2 > ey sdqps gana M
HH{THH : : 35 Lk ,.
1 1 L R E T !
: it fgtits isi LR iiH et it |
HiTHT t - ! T
i 4 H sana seksa 84 o 141 233 "
Y H 3 a5 38 1 4 1 :
3 A TH HH 132 sppeseany pass = Hoshi !
s hE TR :
3 82 EER0 sethd anrns prabe ags srondgns 8! HH |
' T 2 2wy ve prage H H ¢
’oa H 43444+ 13 Foans conse boss) b pe & e H «
1F Py by PEnge Tl L 8% Hn
H 1 268 pinds il o] H _
i i R i R R o n
TR o Fons py by 21 T T . N
18 ouY B 1T 11T [ RS EE 1 he 1 .
B £ FHEHHTH Y TR B T
+ -4 .
4 118 L
H HH z i 552 aoad e —_— w
T T++] v I - i
SEipRsiaiise: 1 : R ]
ed] b —
+ | —
: H A 4 88 + yasngls .mvm o3 S pagas -
g8 > 4 F.w e o1 ol 33 ; .mx H ereri |
ongs pea ey M - Soslr toF <+ feye Jeiesd
i qHiE i G =
radhe 13 o’ e ol ’
3 H : R K 55 T3ass
f f HHHH B o $iHH : i HEE w
H HuHaH P e iy S8 sEos: D
1] 00y g ab4 B s 1% o3 &
Tt 3 11 4 : B
e H 443 m e
LTI H 33! s
1 (R
T iHEOm R Riny = riH
T T pe H- 11z Id ERgse
- N g pene pgs 54 pe . . T o1
b8y -q-q a1y i m'_ P 01" = T AN b sieH
H p b ;
* v = e s . ™ ' [EEE38T e LIS L3ss:
HHH HH $§atds Eheds thet D T A IR & s ot e 1 T
4 1+ =t fissigsdidiet: i : SHoiith i3t 3
e S 3 33313 pe dyg jue3suo 252 225 peda i b33 SER
) § M - PR ot It LR
1 23 1 3utpeo] YSTQ FuUe3zsuU0) b + e 53002
2299 -+ PUSE S0F 0 Ceene . R . . . R - -+ - Ly ove A vifeersd
pebts & HE A
ol 54 1
sz1° = o/ i 5 st B e
TS 11y o1 8580 0484
2 53 1 SINVIdYAMOd am.mzbguﬁs Qﬂbﬁm SUALJOOITEH ¥od Sl il r.ermu b
.1 1. b 3 A + + bord
+ A T ONIQVOT JSIA Ay ‘XITAIT0S “qaads Il HIIM 1 E333] Fass: $ooes prs ot Sases bppns soot:
3% ¢ ;i nvwf FIVH INZOSEA TYNOILVIOWOINY HAMINIH JO NOIIVIUVA F4 EEIEE EERE] SRERS ofeH] KUR: 5 SpEss
—— 3864 v . > ——— PR =) + -+
1one 088 1684 564 o, bi badd be bod

D T b B T

- B e i




e NS R T, LT T

Report No. EX-0-2 CONFIDENTIAL

Reference 24 indicates that when the stall angle at the retreating blade tip
is exceeded by ho, vibration and loss of control exceed tolerable limits,
From Reference 2, Figure 2, it appesars also that profile power required
is approximately doubled under these conditions, Similarly, increasadprofile
losses and vibration may be expected to occur when drag divergence occurs at
thé advancing blade tip.

Among the various factors affecting blade tip angles of attack are
operating C.r/a s P/L, and blade twist., The calculation of these angles of
attack involves much computation. Figure 10 indicates that as CT/o and/or

P/L are increased, the stall occurs at a lower tip-speed ratio (and for the

same reason attainable ceiling is reduced)., Establishment of rotor geometry
and tip speed must, therefore, be based on careful consideration of performance
requirements,

In addition to the large amount of computation required for establish=-
ment of blade tip angles of attack, considerable care is required in selecting
suitable airfoil data from the available literature, Paragraph I, Jj.h. presents
a brief discussion of airfoil selection, and Figures 1l and 15 present data on

G oy a0d drag divergence for the NACA 0015 airfoil section which appears
f4irly reliable.

h. Airfoil Section Data - Selection of Airfoil Sections for Rotor

Blades
(1) Discussion

' bveed el el Eeed 7

The literature contains a great deal of information

regarding airfoil section data., The important characteristics
are: 1lift curve slope, maximum lift, nature of stall, profile
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drag versus angle of attack, minimum profile drag, center
of pressure travel, drag divergence Mach number versus
angle of attack, pitching moment divergence Mach number
versus angle of attack. The most important items, since
they tend to limit helicopter forward speed, ceiling, and
maximum load-carrying ability, are blade tip stall and
drag divergence Mach rnumber,

Unless great care is exercised in the use of airfoil
data as a bsis for the selection of rotor airfoil sections,
the results may be misleading, For example, it is common
to consider values of Clmax s in connection with blade
tip stall, as high as 1l.lL, whereas it is shown in Figure
1} that for a Mach number of .41 (corresponding to a forward
speed of 115 fps and a blade rotational speed of 575 fps),

the clmax for practical construction ssctions is about 1.0,

The following should be considered when using aire

foil data in the selection of rotor blade airfoil sections:

(a) The condition of the boundary layer at the air-
foil surface can seriously affect some of the above-mentioned
characteristics, in particular the maximum 1ift coefficient,
minimum profile drag coefficient, and nature of the stall,
Since the condition of the boundary layer (laminar,
turbulent, or in transition) is affected by the Reynolds

number, initial turbulence, and surface condition, it is
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36.

obvious that great care must be taken in comparing the
results of tests to determine the above-mentioned
characteristics, In general, airfoil data for helicopter
studies should be obtained on sections representing air-
foils of practical construction, or made in conditions of
high turbulence and, consequently, at high values of
effective Reynolds number. Under these conditions the

bucket! which exists on the profile drag curves of some

airfoil sections generally disappears, and relatively little
difference is found in C q among the sections other=~
wise suitable for helicopt:?lﬁse. Comparisons of the maxi-
mum 1ift coefficient should also be made at the operating
Mach numbers (see paragraph (b) below); this is likely to
cause considerable revision of comparisons based on the -

low~speed C data, -

Imax
(b) At high subsonic Mach numbers the drag divergence
1ift coefficient may be lower than the 1lift break C:L . The
Clma.x is effectively based on drag divergence when this
occurs, Use of two-dimensional data (Mcr versus Cl) is
misleading., Figures 12 to 16 of Reference 7 show that not
only is the drag divergence Mach number greater than the
two-dimensional Mcr throughout the operating range of
(‘.l s but the shape of the curves is different in each

case, In general, it is found that thickness ratio is the
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most important item affecting the drag-divergence Mach
nurber; for a given thickness ratio most of the sections

suitable for helicopter use have similar drag divergence
characteristics, even though Mc " charactsaristics may
differ considerably.

(c) 4An extremely important helicopter airfoil section
characteristic is the center of pressure travel, This
information is generally presented in terms of aerodynamic
center location and moment coefficient about the aerodynamic
center wlhc) versus C,. Helicopter blades, of necessity,
have high slenderness ratio, and relatively low torsional
stiffness, The possibility of blade flutter is accentuated
at the relatively high tip speeds (550-650 ft/second) at
which the rotors are operated. Thus it is extremely de=
sirable to eliminate all mass and asrodynamic unbalance
about the a.c. from the blade. Mass balancing of blades
1s standard procedure in helicopter manufacture, Since
the structure of the blades is such that the unbalanced
blade section centroid usually falls close to 30% chord,
whereas the a.c, generally lies in the range 23-25% chord
addition of balance weight forward of the a.c. is required.
Obviously, the further aft the a.c. is located, the less
balance weight is required,

(d) Section lift-curve slope varies little between
airfoil sections, at low subsonic Mach number. Since lift-
curve slope is affected by compressibility, no general
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«

statement may be made in connection with high subsonic
liftecurve slopes.

(e) Moment break generally occurs at a higher Mach
number than the drag break, throughout the range of opexjating
1ift coefficients. Therefore, in general, the moment break
is not considered when comparing airfoil sections for heli-
copters,

(£f) Several airfoil sections, for one reason or another,
have been proposed as suitable for helicopter blades, usually
because of low drag characteristics in low turbulence flow,
or high two=-dimensional Mcr Among these sections are the
NACA OOXX, 230XX, 63 OXX and 8-H-XX series, (Note: The XX
is replaced by numbers representing thickness ratio. For
example, NACA OOl2 is a symmetrical section having a thickness/
chord ratio of 12%,) In general, in the absence of other than
random data on practical-construction sections, the following
may be stated:

Symmetrical sections are most desirable, since they
have zero center of pressure travel up to the moment divergence
Mach number. The NACA OOXX series are, therefore, favorable
for use as helicopter airfoil sections.

The peak drag divergence Mach number occurs at the
angle of zero 1lift, and, consequently, at zero angle of
attack for symmetrical sections, Peak value varies
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inversely with thickness ratio; however, the curve of

drag divergence Mach number versus G‘-l steepens with
decreasing thickness ratio, As a result, thicker sections
are favored in this regard, at Cl greater than about 0.2,
In addition, low subsonic Clmax decreases with thickness
ratio, Smooth airfoil data indicate that the NACA 23012
is the best all=around helicopter airfoil sectlon. As
indicated above, however, this data is probably unreliable
for practical construction airfoils, The NACA 631012 and
632015 sections also appear to have good characteristics
for smooth airfoil data, A possible advantage of these
sections is that the a.c. location is at the 27% chord
station, thus requiring less mass balancing than sections
having the a.c. further forward, All sections referred to
in these discussions have zero or very small center-of=-
pressure travel, However, for practical construction
sections the NACA OOXX probably compares favorably with
other seriesj the 00XX series has the additional advantage
that it is simple to construct, having no camber or reflex

contours.,

(g) From all standpoints the NACA OOL5 is probably
the optimum blade section for the one=man helicopter.
Figures 1 and 15 present section data for the NACA
0015, Figures 10 and 11 are also based on 0015

section characteristics.
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5. Operation of Rocket-Powered Helicopter at Idgh Subsonic Tip Speeds
It has been suggested that the rocket-powered helicopter should be

operated at very high tip speeds to obtain optimum performance. In the following
study it is shown that reductions in fuel rate of the order of 20% are
theoretically obtainable by optimization of tip speed and solidity. This is
achieved at the cost of an appreciable reduction in maximum forward speed and
ceiling, due to stall and compressibility limitations, At the same time, due to
the small blade chord required for optimization, serious mechanical problems

are introduced in design of the rotor system and attachment of the tip power-
plants.

The possibilities of optimizing rotor geometry and tip speed are brought
out by Figure 7. As previously pointed out in Paragraph I.L.c.(1), at tip speeds
above 550 fps the reduction in fuel rate coefficient Kf attainable by op-
timization diminishes with increasing tip speed.

The curves of Figure 7 include no allowance for losses due to stall
and compressibility. From Figure 15 it is seen that maximum drag-divergence
Mach number is approximately 0.8 for the 0015 section: allowing about
80 fps forward speed a tip speed of 800 fps brings the advancing blade tip to
this Mach number, 4s pointed out later in this discussion, little if any re-
duction in cruising fuel rate is gained by operating at tip speeds greater
than 750 fps Blades of lower than 15% thickness ratio have higher values
of maximum Ar>g=divergence Mach number, but also have lower clmax and sharper
stall characteristics, so that using thin sectionsis most unlikely to result
in significant improvemsnt in cruising fuel rate, Proposals to operate at very
high rotational tip Mach numbers (in excess of about Mach .75) must,
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therefore, be regarded with scepticism, from the standpoints of fuel rate
and power required, and the mechanical difficulties involved with engine and

blade retention,

The gains from optimization are very soon logt if stall occurs., From
Figure 2 of Reference 2, which is based on experimental data, it is found that
rotor profile power losses are increased about 25% per degree angle of attack
beyond the stall at the retreating blade tip. Since the profile power at
cruising speed for the typical one-man helicopter is about LS% of total power
required, exceeding stall by one degree results in an increase of about 11%
in power required and in cruise fuel rate -~ more than half the theoretical gain
from optimization referred to above. While losses due to drag divergence are
not documented for rotor systems, they are likely to be of the same order.

Thus the rotor configuration must be chosen to avoid stall and drag divergence

in the cruising condition. The minimum rotor solidity results when drag
divergence on the advancing blade tip, and blade stall and/or drag divergence
at the retreating blade tip, occur at the same forward speed and tip speed.
Thus the optimum rotor airfoil section for use at high subsonic tip speeds must
offer a good compromise between zero-lift drag divergence Mach number and
maximum permissible operating 1ift coefficlient., On the basis of data currently
available the NACA OCL5 section appears to offer a favorable compromise,
compared to other sections.

The maximum two-dimensional M,, of the NACA 0015 section is seen
from Figure 15 to be 0,75, It is pointed out in Reference 5 that two-

dimensional M,, may be exceeded by .060 before increase in profile power

becomes noticeabls,
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An optimization study was made for a one-man hslicopter having a gross
weight of LOO pounds, a disk loading of 2.0 psf, K = ,015, and using the
NACA 0015 blade section. Solidity ratio, fuel rate coefficient K, and for~
ward speed were calculated for various tip speeds. The criteria of required
solidity were avoidance of stall and drag divergence. The data are presented

in Figure 16 for Mia and (Mdd + ,06) = M

ad ¢

From a study of K, versus tip speed (Pigure 16), it at once appears
evident that little is to be gained in terms of fuel econormy by running at
tip speeds above 750 fps. The design problems become increasingly trouble-
some as tip speed increases, as pointed out later in the discussion., At the
750 fps tip speed the fuel rate coefficient = ,080; at a tip speed of 600 fps
and a solidity of ,030, which permit a Vma.x of approximately 80 mph,

Ky = .095 (Figure 7(a)). Thus, the fuel rate is reduced 16% by increasing tip
speed from 600 fps to 750 fps, while reducing solidity ratio from ,030 to .018.
Assuming initial gross weight of 40O pounds and a TSFC of 20 1b/ib/hr (corres-
ponding to an Isp of 180 seconds), the fuel required for a range of ten
nautical miles (without reserves) at a cruising speed of L5 knots is then
reduced from 70 pounds to 59 pounds. At a tip speed of 700 fps and solidity
of ,023, Kf = ,087 and fuel for ten miles is approximately &; pounds.

While the theoretical saving in fuel by going to a tip speed of 750
fps is appreciable, the design problems involved are considerable, Blade
chord is approximately 2-3/L4 inches, and maximum thickness approximately 0.l
inches, Thus, attachment of the rocket powerplants in an aluminum blade
requires that the section be at least 60% solid at the tip, and more material

is required as the blade root is approached.

W CONFIDENTIAL




Report No., EX~0-2

CONFIDENTIAL

M 1333 B34 H 123 +
TR T 5 i
2id 1L, P . HE @ & 18 i1y Nx $
py b Hf © p T T w O
21314t H L i
: BRI EEERE 8 i 35
3
] H & _ mmaeai @Aw %) L RIRH
géeplealqasae f v o4 )Y &% " 1
4 - % ® b+ wﬁ (3 X1 4 4 m o 'W sige
e £ QiR ] T ust S el 33828 3503
FHH 1H P 43 piads J3Rd1 It sda i 10D =1 ; i
2 3 Ht © + H 1
=) THIHIHE w o Bilidiiiif gd [t sebaphqpisls
13spRsRabates s HH i
gin it AR (218 R HH T wuj K ; ; g5
HH HH O O H gl & IR LRI be) TR B R peRRiReoct ot
H HIH R ] FESEESERR 10003 HR 4 3081 FEans Bat pYsRR 4aRss
m 3353 .m. d HilHH 5 M m R A BEdEaRs; bes
32 Ry eee ry ] e
o F LR HEE AR R R
> »w » i m s 134 safea b 114 -4
0 er HH & & 3 ] =5 ”‘. MM iy poe 1 agus i
. » 1 Hi HE HH = it sy H HH
& 5 R tHH ] i e 8 TR RS £ T i 35
m R =) A e lHEERRYH 5 4 mu =<f $htattsbeny mw i3
a g8 < & o HE B @ T e e o ¢
* 13 {1 ] i H sHadh ettt S §4 LR 24
m.hwa T [ 4 HH 5 1,.1»‘“H..1~q 3
el @] o o BHIGH 2 i SR B t ? HHE
ol &l » et , o b i i i, L
2 = 1 e m i e ] -
2] @ i S H Hi & H & i & HHH
el o > L4 <9 o a=Biilisastatts Hisy 3
o bs <k & H 1 IT3 ook < [}
I be 1] a8 3 3 8048 $990% b ol wi
= g : & L 30 e s
m 1y H 83,438 [ 53 sasgnslsied SR hnl umxﬂ =3
1 HitH : s ilsis ittt gt s, tE
> R i © m Siites T T3st 13003
SapEsiapsessgsabess H 2 i b 4 . $9sd tloed gest 328 T 23
5 i . - EE L : i
] HH 8 H (=] IR TR HHE
8 el =l of i o
H : HHH F &« 1H o ere Sibet Fire it
£+ H % i8Eee s : m s
N a2t
=] f S BT ESRHIE : :
2 R LT : i o SHEITI IR EREE: 200 Basta sfo gt FRES: PRS2 3 i
- t R 3 =) &Y pihbdniiaEntan gl e e B R R Y 3
: taisnpn ginn T £E: IOV S5 131 5 ) EE R B St e PR I RE Rt 52 i
1 ssbpupt beghi by 355 wwmwm Sl gt gusp i tEgsss i H.'. : dase8
’ 3 L g e e LA B R R
rate Hn o S92 jo8etbd SEESEE EReds eeoee 28 -
ity Hi 11 c m_ d T Lot R Eh Eene Feaet BT
N 152 5 3 o g /.W. e 22 m..xrur: 2
b 3 ¥ Bl foiit]n
T YA JUeTITIIO0) ejey-Tey i L T 98T e§sssthecs st sl
— b H S pastary 23 22
yae |
£ Hohp 3 I B 4 i
H 2522 L3328 HH <] 1
343 1> {13 114+ He + {4 =1 1P e w‘f:
T Sepsessgingsasaasarpazasssasy: H 22 £ 3§ 2
' E
: - ° HH sdy ) peeds premxo 331 soepe Fibe1 CRETIEST
T o orjey L3TPTIOS : o33 sop B
1HH HH : « pos: s pitad sEent b
N .«’\v.l,lq t r = ]

Snmns——

CONFIDENTIAL



Report No, EX-0-2 CUNF IDEN"AI.

In the calculations of Kf it is assumed that the rocket engines
can be faired without increase in blade profile losses. While losses due to
engine fairing are probably small with the larger blades associated with the
lower tip speeds, it is not likely that engine diameter can be decreased appre=
ciably with tip speed, so that the gain in fuel rate may not be fully
realized., The blade having a tip speed of 600 fps and ,030 solidity is assumed
to be untwisted., The low~solidity high~speed rotor must be twisted about -16°
to permit operation at the tip ungles of attack required to attain the required
values of drag-divergence Mach nurber. An error of %? in retreating blade
tip angle of attack can result in a reduction of 20 fps in the limiting for-
ward speed; such an error could easily be caused by aerocelastic effects. In
addition, severe twist of the blade will probably result in a considerable
increase in the steady and one-per-rev flapwise bending moments; this is due
to the fact that the spanwise center of pressure is moved inboard when the
blade is twisted, while mass distribution is not appreciably affected. The
relatively large amount of material required to withstand the centrifugal
force of the rocket powerplant results in a considerable aft movement of the
section c.g., resulting in chordwise balance problems, Either a nose weight
must be added, or the engine c.g. must be moved forward of the blade quarter-
chord station; the latter step results in appreciable local blade chordwise
bending moments due to engine centrifugal loads. From the foregoing dis=-
cussion it appears unlikely that any appreciable saving in rotor system weight
can be realized when optimizing rotor tip speed and solidity to reduce fuel

consumption,
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In addition to the design and fabrication problems outlined above,
reduction in solidity and increase in tip speed affects adversely the
helicopter flying qualities. Assuming no reduction in y , eo , Or CT/°
when reducing solidity from ,030 to ,018, and increasing tip speed from 600
to 750 ft/second, study of Figure 22 herein indicates that the hovering flying
qualities will be changed from those shown for the rocket powered helicopter
to something closely approaching those of the helicopter vpowered by a re-
ciprocating engine. The percent overshoot, control sensitivity and ratio
(height of second peak/height of first peak) in hovering are increased 50-607,
The reason for this is that the damping in pitch of the rotor system is
inversely proportional to the rotor speed. Not only the hovering flying
qualities but also the flying qualities in forward flight are adversely af-
fected by reduction in damping in pitch. It is pointed out in Paragraph II,5,b
that some means of providing angle of attack stability is required in forward
flight to permit the one-man helicopter to meet the pull-up requirements of
MII-H-8501, and that the amount required varies inversely with damping in
pitch. Angle of attack stability is most easily provided by means of a hori-
zontal tail. Thus it may be inferred that the optimization in rotor geometry
discussed here will result in a requirement for an increase in angle of attack

stability, probably by means of additional horizontal tail area.

6. The Ducted Propeller or Ring=Wing

The use of a ducted propeller has been suggested for use as a rotor in

one-man helicopter applications, Reference 21 presents theory and some test
data in connection with a ducted propeller. A summary, with comments regarding
application to the one-man helicopter, follows:
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An increase in static thrust with very small increass in power is ob=
tained by use of a circular duct, fabricated from a ring of airfoil cross=
section, Physically, this results from an increase in mass flow through the
duct, due to interaction of propeller and duct. A large proportion of the
increase in thrust acts on the duct, and must, therefore, be transmitted
through the structure attaching the duct to the airframe.

However, and most important, the propeller must be operated at very high
values of thrust coefficient to realize this increase in thrust-power ratio.
Experimental data presented in Figure 6=~10 of Reference 21 indicates that
in order to obtain best results the propeller should be operated at a thrust
coefficient CT of the order of 0.15, at which value thrust of the ducted
unit is about three times that of the nonducted propeller, without appreciable
increase in power required. When the ducted unit 1is operated at a CT of ,10,
the increase in thrust drops to about 25%,

However, at a tip speed of 600 fps, a Cp of .10 represents a disk
loading of 86 psf - obviously not a practical value for the one-man helicopter.
Under optimum conditions the ducted propeller shown in Figures 610 of
Reference 21 will be operating at a disk loading of 16} psf (with tip speed
600 fps), at a power corresponding to a disk loading, for the unducted propeller,
of about LO psf- (If tip speed is reduced to 300 fps, the above disk loadings
become L1 and 10 psf respectively. Hovering power required for a disk loading
of 10 psf is almost twice that for a disk loading of 2 psf.) Thus the ratio
of 1b/hp for the ducted propeller is considerably lower than that achievable

with a conventional rotor. For example, in the case referred to above, with
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therefore, be regarded with scepticism, from the standpoints of fuel rate
and power required, and the mechanical difficulties involved with engine and

blade retention.

The gains from optimization are very soon lost if stall occurs, From
Figure 2 of Reference 2, which is based on experimental data, it is found that
rotor profile power losses are increased about 252 per degree angle of attack
beyond the stall at the retreating blade tip. Since the profile power at
cruising speed for the typical one=man helicopter is about L5% of total power
required, exceeding stall by one degree results in an increase of about 11%
in power required and in cruise fuel rate = more than half the theoretical gain
from optimization referred to above, While losses due to drag divergence are
not documented for rotor systems, they are likely to be of the same order.

Thus the rotor configuration must be chosen to avoid stall and drag divergence

in the cruising condition. The minimum rotor solidity results when drag
divergence on the advancing blade tip, and blade stall and/or drag divergence
at the retreating blade tip, occur at the same forward speed and tip speed.
Thus the optimum rotor airfoil section for use at high subsonic tip speeds must
offer a good compromise between zero=lift drag divergence Mach number and
maximum permissible operating 1lift coefficient. On the basis of data currently
available the NACA 0015 section appears to offer a favorable compromise,
compared to other sections.

The maximum two-dimensional M,, of the NACA 0015 section is seen
from Figure 15 to be 0.75. It is pointed out in Reference 5 that two-

dimensional Mﬁd may be exceeded by .060 before increase in profile power
becomes noticeable,
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An optimization study was made for a one=man helicopter having a gross
weight of L0O pounds, a disk loading of 2.0 psf, K = .015, and using the
NACA 0015 blade section. Solidity ratio, fuel rate coefficient Ke and fore
ward speed were calculated for various tip speeds., The criteria of required
solidity were avoidance of stall and drag divergence. The data are presented
in Figure 16 for M., and (M, +.06) =M, .

From a study of K. versus tip speed (Figure 16), it at once appears
evident that little is to be gained in terms of fuel econonmy by running at
tip speeds above 750 fps. The design problems become increasingly trouble-
some as tip speed increases, as pointed out later in the discussion. At the
750 fps tip speed the fuel rate coefficient = ,080; at a tip speed of 600 fps
and a solidity of .030, which permit a V . of approximately 80 mph,

K, = .095 (Figure 7(a)). Thus, the fuel rate is reduced 16% by increasing tip
speed from 600 fps to 750 fps, while reducing solidity ratio from .030 to .018.
Assuming initial gross weight of 40O pounds and a TSFC of 20 1b/1b/hr (corres=
ponding to an Isp of 180 seconds), the fuel required for a range of ten
nautical miles (without reserves) at a cruising speed of LS knots is then
reduced from 70 pounds to 59 pounds. At a tip speed of 700 fps and solidity
of .023, K = ,087 and fuel for ten miles is approximately &, pounds.

While the theoretical saving in fuel by going to a tip speed of 750
fps is appreciable, the design problems involved are considerable, Blade
chord is approximately 2-3/L inches, and maximum thickness approximately O.k
inches, Thus, attachment of the rocket powerplants in an aluminum blade
requires that the section be at least 60% solid at the tip, and more material

is required as the blade root is approached.
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tip speed of 300 fps and disk loading of L1 psf, the ratio Pr/‘w is approxi=-
mately 0.1, compared to a value of 0,058 for a conventional rotor at a disk
loading of 2 psf, a tip speed of 600 fps, and a solidity ratio of ,030,

The above figures are presented for static thrust only. If the ducted
unit is to be moved laterally through the air (as would be expected for the
one-man helicopter) the parasite drag of the units will be considerable,
Assuming that a disk loading of LO psf can be tolerated (from the standpoint
of power=-off descent), a duct diameter of approximately L feet would be re=
quired for a 40O pound helicopter. With a duct length of 1,0 feet, the addi-
tional equivalent flat plate area due to the duct is L.0 square feet = an

increase of about 60% from the conventional configuration with unfaired pilot,

The weight required for the duct and support structure must be considered
as additional penalty. For the 'lateral! configuration structure must be
provided to attach both ducts rigidly to the pylon, and for rotor drive ’
if a geared gystem is umed,

7e Performance of a One=Man Heliconter

Figures 17 through 21 present estimated performance for a one-man heli-
copter., The calculations were based on the following characteristics:
Gross Weight: LOO 1bs
Disk Loading: 2 psf
Solidity Ratio: ,030
Tip Speeds: 550, 600, 650
Flat Plate Area Coefficient K = An/w - ,015
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The Figures are self-explanatory, in general, and only the following comments
are necessary:

Maximum speed is based on stall at retreating blade tip (Figur<s 19 and
21); with G . based on Figure 1L.

Compressibility limitations at the advancing blade tip are not critical,
and are not shown on the charts.,

From Figure 18 it is seen that vmax based on power available increases
with altitude for the rocket, and decreases with altitude for the ramjet (as
it would for all air-breathing engines unless supercharged). Thus altitude
limitations for the rocket powerplant are aerodynamic, and in the case of the
one~man helicopter are likely to be based on tip stall,

8. Methods of Performance Calculation

The performance calculations used in preparing Figures 17 through 21 are
based on methods developed at Hughes Aircraft Company. References 10, 12, and
13 present procedures developed by the NACA for performance estimation and the
results obtained by use of these methods will be very similar, and in general
slightly more optimistic than those presented here.

Other sources of performance methods are References 1llj, 19 and 23,
Reference 19 discusses in detail the NACA procedures, and presents a compre-
hensive bibliography on the subject. Reference 23 presents a very complete
discussion of rotor aerodynamics, and of helicopter stability and control.
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SECTION II - FLYING QUALITIES OF THE ONE-MAN HELICOPTER

1. Iying Qualities of the Ideal One=}an Helicopter

The proponents of airborne assault by means of one-man helicopters
visualize a machine which may be flown by relatively unskilled personnel, The
ideal machine is first described, In contrast, Paragraph II.2. discusses the
flying qualities which nay »rove feasible for the one=man helicopter, As would
be expected, these fall short of the idealized requirements.,

a. Rotor speed held constant by a speed governor, or:

Throttle connzcted to collective pitech stick, scheduled so that
power required at constant rotor speed is obtained, independent of pitch setting.

b, Ship will have fairly long natural period in nitch and roll (15-20
seconds) so that normal pilot control motions will not tend to amplify oscilla-
tions, OSlow motion of ship will then permit ample recovery time after a
displacement.,

c. Reduced control response, A control resnonse 357 to 50% less than
that of a one=man helicopter having geared drive appears to be satisfactory.

d. The machine should be at least neutrally stable in hovering and at
eruising speed, Hovering 'hands-off! for periods of 30 seconds or more should
be possible.

e. It should be possible to {1y an assault mission with only three
collective pitch settings, and without any need for throttle adjustment. The
operation might be carried out as follows:
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(1)
(2)
(3)
(L)
(5)

f. In addition to the above characteristics, the ideal machine should

CONFIDENTIAL

Run=up with collective pitch on low=pitch stop.
Take=off, hover and cruise on level flight stop.
Autorotation on low=pitch stop.

Flare-out on level flight stop.

High pitch stop available for maneuver and full-power climb,

meet the Flying Qualities Requirements of Reference 15 (MIL-H=-8501),

2. Recormendations Regarding Achievable Flying Qualities of the One~Man Helicopter.

In contrast to the idealized requirements for the one-man helicopter,

discussed in Paragraph II,l., minimum flying qualities requirements, which are

regarded as being achievable and highly desirable, are discussed below:

a, The he

licopter shall meet the maneuver stability requirements of

Reference 15, Paragraphs 3,2,11.1 and 3,2,11.2., (It is the opinion of the

author of Reference 18 that a helicopter which meets Paragraph 3.2.11.1 will

probably meet Paragraph 3.2.11.2 without modification.)

b. It is

hovering flying qualities obtained for values of the hovering stability parameter

probably not imperative to provide hovering stability. The

(see Paragraph IT.3.c.herein) between 5 and 10 appear to be satisfactory,

c. Stable

stick travel in the flight range from about 30 mph to top

speed should be nrovided,

The simple

st and nost reliable way to achieve items (a), (b), and (c)

above is by use of tip weights and a horizontal stabilizer. A control rotor

or a gyroscopic s

naneuver stability, in addition to superior hovering characteristics.

tabilizing bar will, up to a certain point, also provide
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it is doubtful whether they will provide stick position stability.
In addition to the above requirements, the following provisions are
desirable to obtain adequate flying qualities:

de Either a movable vertical fin with an effective tail volume
(= tail area x tail arm) of 15-25 cubic feet, or a control tail rotor with
maximm moment of about 30 ft=lbs should be provided. The tail rotor is
more desirable from the standpoint of safety to the pilot, but is obviously
more dangerous to surrounding persommel., A blade which shatters on impact
without severe injury to the body is desirable, but a suitable material has
not yet been suggested. The alternative is a rotor guard, similar to that
used on bandsaws,

6. In view of the weight and complication of suitable speed governor,
it is probable that the pitch-power schedule (Paragraph II,7.b.) will prove
more practical. lMonitoring by the pilot will be required, This schedule
does not function power-off.

f., In general, the use of offset flapping hinges is not recommended.
The offset hinges improve hovering flying qualities, but with rapidly
diminishing returns for offsets greater than about 3% of rotor radius. Ad-
ditional advantages are greater permissible c.g. travel, and improvement in
stick position stability. Disadvantages are increased hub weight and vibra~
tion, due to steady and vibratory moments caused by blade flapping and
directly proportional to amount of offset. lManeuver stability is improved
at low speed, but the improvement becomes less with increasing speed, The
stress and vibration effects due to offset probably outweigh the advantages,
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3. Flying Qualities - General

a, Discussion of Criteria

The literature contains a considerable amount of analytical work in
connection with helicopter stability, most of it concerned with the period and
damping of free oscillations. In seeking suitable flying qualities criteria,
the following points must be considered:

The mogt important flying qualities requirements are those
relating to maneuver stability in forward flight, specified in
MIL-H-8501 (see Paragraph II.3.c. herein),

The next most important requirement (hovering or forward
flight) is that relating to control sensitivity. This is stated
in Paragraph 3.3.14 of MIL-H-8591 (Reference 15).

In hovering, except for control sensitivity, the most important
requirements for rotorcraft are those concerning directional flying
qualities.

Both civil and military specifications state a requirement

for stick position stability in forward flight (stick travel directly

proportional to forward speed).

The maneuver stability requirements were arrived at as the result of an
NACA flight test program for the study of helicopter flying qualities (dis-
cussed in Reference 16). It is concluded in Reference 16 that the most
important factor in the longitudinal characteristics in both pull=-ups and
steady flight is whether or not a prolonged stick-fixed divergence will occur;
that the degree of pilot satisfaction with the characteristics of a pull-and-
hold maneuver correlated with his satisfaction with the normal=-flying
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characteristics; and that a requirement based on long-period oscillations
could not be used as & substitute for the pull-and-hold requirements,

The control sensitivity problem is discussed in Reference 20, where
it is pointed out that the maximum roll rate of a conventional two-place
helicopter is about twice that for a comventional two-place airplane, while
the helicopter has only about one=fourth the damping in roll of the airplane.
Thus a serious danger of overcontrolling exists in the helicopter, which is
accentuated as the machine is reduced in size, It is, therefore, important
that some means for achieving a reduced control response be incorporated in

the one-=man helicopter.

b. Means of Gbtaining Satisfactory Flying Qualities
The paragraphs which follow present a discussion of means for predicting

the flying qualities of a helicopter and the improvement in flying qualities
obtainable with various devices, A brief discussion of recommended methods
for improving one-man helicopter flying qualities is also included.

Increase in the rate damping of the helicopter will result in less
sensitive control responss, and improve the maneuver stability., The simplest
method of increasing rate damping is by use of blade tip weights. In the
case of tip drives the engine will provide some, if not all, of the required
weight., Offset hinges also increase the rate damping, and help offset the
reduction in rate damping of the main rotor that occurs as forward speed is
increased, However, since angle of attack stability is adversely affected by
offset hinges, the overall effect tends to be destabilizing in forward flight,.

With rate damping obtained by means of tip weights, the helicopter
may be stabilized to the flight path by providing angle of attack stability.
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This is best obtained by means of a horizontal tail, which also helps to
produce stick position stability, While it is true that the horizontal tail
is ineffective in hovering and at low forward speeds, its simplicity compared
to other stabilizing devices, plus the fact that adequate hovering stability
is achievable by means of tip weights, are in its favor.

The gyroscopic stabilizer bar and the control rotor have been used
for stabilizing helicopters. Of the two, it is probable that the control
rotor is preferable for the one=-man helicopter., Both devices as generally
used increase the rate damping of the helicopter; in the case of the control
rotor this may be varied by varying the aspect ratio of the control rotor
paddles, and in the gyro bar by varying the characteristics of the viscous
dampers. The control rotor also acts as an aerodynamic servo in the control
system, resulting in a greatly reduced control response and the isolation of
force feedback from the main rotor to the stick.

It does not appear likely that a small autopilot, sufficiently rugged

and light for the one-man helicopter, will become available in the near future.

Figures 23 and 2} are maneuver stability charts, both based on the
methods of Reference 18, Figure 23 was obtained as the result of an analogue
computer program, using the helicopter equations of motion of Reference
The most important derivatives are the damping in pitch parameter Mq/Iy ,
and the angle of attack stability paramster Mc/Iy . An additional, but
considerably less important stability parameter is gLa/WV . Plots of
(Ma/Iy)(WV/gLa) and na/ry versus Mq/Iy for marginal maneuver stability
(two-second requirement, Paragraph 3.2.11.1, Reference 15) are presented in
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Figures 23(a) and 23(b). Figure 2 of Reference 18 presents similar curves.,
Figure 3 of Refersnce 18 presents a plot of damping in pitch parameter
versus modified angle of attack stability parameter for marginal maneuver
stability. This chart is reproduced in Figure 21 herein, and the estimated
characteristics of the one-man helicopter over a range of tip-speed ratios,
with various stabilizing devices (including horizontal *ail) are plotted on
the chart.
Figure 2l is more general than Figures 23(a) and 23(b), The modified
angle of attack stability paramester plotted in Figure 2l includes the term
Lq s which is dependent on pitch change proportional to angle of attack: this
term occurs in connection with devices such as the gyro bar, control rotor,
and autopilot, When evaluating the maneuver stability of horizontal stabilizer
and tip weights Figures 23(a) and 23(b) are adequate. However, when stabilizing
devices with proportional control are investigated, use of Figure 2L is
desirable,

c. Prediction of Flying Qualities

Reference L presents the most comprehensive studies to date on the
hovering flying qualities of small helicoéters. Reference 18 presents a chart
method for predicting the ability of a helicopter to meet the maneuver stability
requirement of Reference 15, Paragraph 3.2.,11.1. This requirement is presented
belows:

The following is intended to insure good maneuvering
characveristics., After the longitudinal control stick is

suddenly displaced approximately one inch rearward from trim
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in steady flight and then held fixed, the time history of normal
acceleration shall become concave downward within two seconds
following the start of the maneuver, and remain concave downward
until the attainment of maximum acceleration., Preferably, the
time history of normal acceleration should be concave downward
throughout the period between the start of the maneuver and the

attainment of maximum acceleration.

In Reference L the hovering flying qualities of four small helicopters,
powerad respectively by pulse jet, ramjet, rocket and reciprocating power-
plants, are analyzed, The first three have blade tip weights in the form
of powerplants, the fourth has geared drive and, consequently, no tip weight
on the blades,

Figure 22 is reproduced from Figure 2 of Reference L. It is seen that
the hovering flying qualities are related to a hovering stability parameter,
which is approximately equal to the ratio of applied control moment to damping
moment., The value of this parameter (and consequently control sensitivity,
etc.) is greatly reduced by use of tip welghts to increase rotor mass moment
of inertia. It is probable that a one-man helicopter having a value of the
parameter between 7 and 10 will have satisfactory hovering flying qualities.
(It should be noted that the rocket helicopter referred to on the chart is
powered by hydrogen peroxide rockets. These units are relatively light,
which accounts for the relatively high value of 14.5 for the hovering
stability parameter of this machine.)
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L. Discussion of Important Stability Derivatives, M, and Mq

a., Angle of Attack Stability Derivatives, AMQ_

According to the sign convention of Reference 18, used here, positive

M& is destabilizing. The following contributions to M& are discussed:

M& -« contribution due directly to rotor, This is destabilizing.

T
M& ~ contribution of rotor due to use of thrust moment to trim out
rt
fugelage moments. Destablizing or for nose-down moments on
fuselage.
Ma - direct contribution of fuselage.
f
M& ~ contribution from a horizontal tail.
t

Figure 25 presents some !'fuselage! characteristics obtained from wind-
tunnel tests of a one~man helicopter, reported in Reference 4. (Note: 'fuse-
lage! includes pilot.) It should be noted that these results were obtained
for a very smooth, streamlined model, which may not be representative of the
one-man helicopter, The pilot of such a machine is likely to be wearing
flight clothing having much rougher texture than that represented by the
smooth surface of the model pilot used in the tests., It may not prove prac=-
tical to fair the hub and pylon of the service article as was done for the
model., Therefore, the aerodynamic characteristiecs of the service article may
not reflect those found for the model. This is particularly important in re=-
lation to pitching-moments, which appear to be surprisingly high for the model,
and which are such as to have an adverse effect on the maneuver stability
characteristics, particularly on Mﬁrt « The model tests indicate that the
fuselage' causes nose-~down moments in forward flight (C, negative over range

of altitudes tested).
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Also, the slope of Cm versus as for all configurations of the model is
shown to be stable, so that Maf is stabilizing. It may be shown, however,
for the magnitude and sense of Cm reported, that the destabilizing con-
tribution of M“rt greatly exceads the stabilizing contribution of Maf R
so that the overall sffect of the fuselage is destabilizing. As indicated
above, the values of Om reported are somewhat larger than would normally
be expectedjy with a configuration having different stability characteristics
the 'fuselage'! contribution to maneuver stability may be less adverse than
for the case considered.

The unstable contributions of rotor and fuselage to M may be

countered by use of a horizontal stabilizer, or by displacement input (denoted
by kl in Reference L) to the controls., The displacement input may be ob=
tained by such means as an autopilot, a gyro bar, or a stabilizer attached

to the swashplate, However, it appears to be much simpler, and in general
effective, to use the fixed horizontal stabilizer,

b. Damping in Pitch, M
As pointed out in Paragraph II.3.b. , the stability derivative Mq

is important in relation to maneuver stability. Its importance in relation
to hovering flying qualities is discussed below,

The hovering stability parameter presented in Reference L and in
Figure 22 herein may also be expressed as follows:

Applied Control Moment Th + (CF)(e 8
Damping Moment ar + e Ty (8)

This is increasingly the case as forward speed increases.
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The expression for 1! » » derived in Reference 18 is:

q
0, 1
- =27 - o)
Mqr Th @)[1.0 0.29 5-175—‘ (9)

In Reference L, 2L is substituted for 27 (the latter number accounts
for tip loss) and a/18 is substituted for 0,29,

W#ith zero flapping hinge offset, Equation (8 ) reduces to Th/‘Mqr R

and i1 hovering Equation (9 ) for the one-man helicopter is approximately

7153/13.5. Thus with sero offset hinges the value of the hovering stability
parameter is approximately given for the one-man helicopter by:

Applied Control Moment .. . - Yo
Darping Tormsnt with zero flapping hinge offset 3T (10)

If a value of 10 is desired for this parameter (see Figure22), it appears
that Q =135, Blade I, for a typical one~man helicopter (R = 8 £t, tip
speed 600 fps, @ = ,030) must then be approximately 12 slug-ftz. Since I,
for blade alone will be of the order of 6 slug-ftz, it appears that with zero

offset a tip weight of about 3 pounds is required to reduce the value of the

| hovering stability parameter to 10,

At speeds in excess of speed for minimum power, 6 o increases with

speed (see Figure17). From Equation (9 ) it is seen that M, decreases

with increase in 90 » In the case of the one-=man helicopter described above,
Iqur reduces to about 30% of its hovering value at 80 moh. From Figure 2l it
is seen that a three inch flapping hinge offset provides maneuver stability ap-
proximately equal to that provided by a tail carrying no download, but con-

siderably less than that provided by the tail set to balance the fuselage nose=

down moment,
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5. BEffect of Various Items on Flying Qualities
a. TiE Weights

Figure 26(a), reproduced from Reference L, presents the response of a

small reciprocating engine driven helicopter with and without stabilization.
It is seen that the effect of a three=pound tip weight on each blade makes
the helicopter almost neutrally stable, and reduces the control sensitivity
about 4O%., The characteristics are then similar fo those of the unstabilized
pulse jet helicopter, as presented in Figure 26(b).

b, Horizontal Tail

Figure 2 presents the characteristics of a rocket-powered one-man
helicopter plotted on the maneuver stability chart of Reference 18. It is
seen that with no horizontal tail the maneuver stability margin is reached
at p = ,1}; with tail carrying no download the margin is reached at about

p = .15 (corresponding to about 90 fps). When the fuselage pitching moments

are trimmed out by the horizontal tail (see discussion in Paragraph II.lL.a.
the machine possesses maneuver stability for p in excess of .25.

Figure 27(a) presents Ma/Iy for the above configurations versus
tip-speed ratio. It is seen that M(1 is stabilizing only with the tail
carrying download,

From Figure 27(b) it is seen that the horizontal tail has relatively
small effect on Mq . (Notet Iy = )0 slug—ft2 in these examples.)

Figure 28 illustrates the effect of various tail configurations on
the stick position versus speed of the rockete-powered helicopter., It is seen

that the horizontal tail, in addition to providing maneuver stability,
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VARIATION OF PITCHING=-MOMENT COEFFICIENT WITH
PITCH ANGLE OF A 1/3~-SCALE MODEL OF THE
PINWHEEL HELICOPTER
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also improves the stick position stability characteristics.

Tests reported in Reference 6, on a model of a one-man helicopter,
indicated horizontal tail effectiveness of .3, This is probably due to the
reduction in dynamic pressure behind the pylon. (Effectiveness is here
defined as: measured tail power/estimated tail power in free stream.)
Obviously a low effectiveness necessitates increase in tail area required for

stabilization. This is also brought out by Figure 28,

c. Flapping Hinge Offset

Prior to discussing the effect of hinge offsets on other flying quali-
ties, it should be poinbea out that hinge offsets produce both steady and
vibratory moments on the hub., In the case of the two-bladed rotor the steady
moment (assuming lateral tilt of the tip path plane is zero) on the hub is
equal to (CF)(e)(al), and the vibratory moment = (CF)(e)(al)(cos ). For
a three-bladed rotor,the coefficient of the steady moment is 3/2: a three=
per=rev vibratory moment is also developed, but it is of small amplitude
compared to the steady, Assuming that 2° of flapping are required for trim
(possible either for c.g. offset or fuselage pitching moments) a vibratory
two-per-rev moment of amplitude about 35 fi=lbs per inch of offset will be
developed on the hub of a two-bladed rocket-powered helicopter.

Obviously, offset not only results in vibration, but results in in=

creased hub and pylon structural loads and weights, which rapidly becomc

prohibitive for the one-man helicopter as offset is increased.
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Points in favor of hinge offset are:

(1) Improvement of hovering flying qualities. However, this
is apparently true only for small offsets, Figure 29 presents
hovering stability parameter versus flapping hinge offset for the
rocket-powered helicopter of Figure 19. It is seen that little
improvement results for offset greater than about three inches,

The improvement from three inch offset could also be equalled by
about two pounds additional weight on each tip.

(2) Considerable increase of Mq in forward flight (see
Figure 0(b) for rocket-powered helicopter, at g = .20). However,
overall influence of hinge offset on maneuver stability is not
large due to generally adverse effect on M (see Figure 2L).

(3) Reduction in control travel required for trim (Figure 31).

If fuselage pitching moments are aslarge as Figure 25 indicates,

some hinge offset is essential if moments are not balanced by

horizontal tail.

(4) Tmprovement in stick position stability.

d, Effect of Forward Speed on I_L‘L and Iilq

Figure 27(a), previously discussed, illustrates the effect of speed on the
stability parameter Ma/Iy for a one~man, rocket-powered helicopter. It is
seen that for the case with no horizontal tail, and the case where a stabilizer
is provided but does not carry download to balance pitching moments, Ma.
becomes increasingly destabilizing with increasing tip~-speed ratio., When the
tail is set to carry a download for balancing fuselage pitching moments, Ma.

is stabilizing throughout the speed range.
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Figure 27 indicates that for the one-man rocket-powered helicopter,
Mq with or without horizontal tail is stabilizing at low speed, but becomes

rapidly less so as tip-speed ratio increases. At approximately p = .25,
Mq with zero flapping hinge offset becomes zero, for this helicopter.

e, Effect of Tip Speed on M\‘ and Mﬁ

Figures 32(a) and 32(b) present Ma/Iy and Mq/Iy versus tip speed
at a tip-speed ratio of .20 for a rocket-powered one~man helicopter. It is
seen that both parameters increase almost linearly,in a destabilizing sense,
with tip speed, This point should be borne in mind when considering operation

of tip~powered helicopters at very high tip speeds (700 fps and above).

f. Control Rotor and Gyro Stabilizing Bar

Both. the control rotor and the gyro bar, as generally used, are
devices for increasing the rate damping of the helicopter rotor. It is
pointed out in Reference L that this can be done with less penalty in weight
and complexity by means of blade tip weights. Since the tip-mounted powerplants
also act as tip weights, it appears doubtful whether either the control rotor
or the stabilizing bar are necessary in the case of one-man helicopters
powered in this manner,

In Reference L the characteristics of the control rotor and stabilizing
bar are discussed in terms of Nl/N s which is the ratio of the rate damping
of the stabilizing device to that of the main rotor, and kl s the displacement
control ratio, The definition of k.l in Reference L is:

k1 = main rotor cyclic pitch change per unit of

control rotor (or gyro bar) tip path plane
tilt with respect to shaft

CONFIDENTIAL 3
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Displacement control provides angle of attack stabilization, At a speed of
45 knots a horizontal tail volume of about five cubic feet provides angle of

attack stabilization equivalent to a kl of .10,

As a result of analogue computer studies it is concluded in Reference
Ly that for tip-powered helicopters (for which main rotor rate damping is appre-
ciably increased by the tip powerplants) the value of El/N should be less
than 0.1, and preferably zero. That is, the device should be essentially a
displacement gyro., In addition, the values of ky should lie between .05
and .10, A value of k1 = 1,0 was found in the studies to introduce a
poorly damped high frequency in the control response, and to greatly decrease
control sensitivity.

A ramjet-powered helicopter in the 1000-pound gross weight class has
been equipved with a control rotor and flown for a considerable number of
hours. The ratio Nl/N is considerably higher than the value of 0.1
recommended (in connection with tip=-powered helicopters) in Reference L, and
a k1 of 1.0 is used. The control response, although greatly reduced, is not
considered objectionably so. The high=~frequency response predicted by the
analogue computer is not noticeable. These results are fortunate, since a
value of Ni/N of 0,1 in connection with a control rotor would result in an
impractically low control response, and a kl of 1.0 permits simplification
of hub mechanism.

No flight record is available of the combination of gyro bar and tip-
driven rotor. Low values of Ml/N do not in this case affect the control

response, as they would for the control rotor; however, use of the bar
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effectively as a displacement gyro will result in large bar flapping angles
during maneuvers, introducing problems of clearance in the control system.

In the case of the one-man helicop*er, where weight is at a premium,
it would be preferable to avoid the use of both tip weights and control rotor
(or stabilizing bar) for rate stabilization, This is especially true where
tip weight is already available in the form of tip powerplants.

As a matter of interest the characteristics of a one=man helicopter
with control rotor and stabilizing bar are plotted on the maneuver stability
chart of Figure 2., The values of Nl/N and k, are typical of those used
in practice. These are, respectively, .30 and 1.0 for the control rotor,

.30 and .80 for the stabilizing bar. (It should be noted that N, is varied
in the case of the control rotor by changing the aspect ratio of the paddles,
and in the case of the gyro bar by changing the rate of the viscous dampers.)

It is seen from Figure 24 that the gyroscopic bar with the above
characteristics appears to provide satisfactory maneuver stability over the
computed range of tip~speed ratios, and that the control rotor provides satis-
factory maneuver stability ur to a tip-~speed ratio of about 0.22, a range which
should be adequate for the one-man helicopter. It should be noted that these

devices probably will not provide stick-position stability,
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6.

Directional Characteristics

a, Directional 3tability

The most important contributions to the directional characteristics of
the one=man helicopter come from the pilot, landing gear (if provided) and
vertical tail and/or tail rotor (if provided), From Reference 6 it appears
that the one~man helicopter with unfaired pilot, whether seated or with legs
extended (in standing position) is directionally unstable. The vertical tail
is approximately 50% effective in the location tested (about 5 feet aft of
rotor shaft, and centered at level of pilot's shoulders,) Assuming 50%
effectiveness, and conventional plan-form, it appears from Reference 6 that
tail volume of 15 cubic feet is required to provide approximately neutral
directional stability. To provide the minimum desirable amount of positive

directional stability, about 25 cubic feet of vertical tail volume is required.

b. Directional Control

The following is reproduced from Reference 15:
Paragraph 3.3.5. Directional control effectiveness shall be such that
when the helicopter is hovering in still air at the maximmum éverload
gross weight or at rated take-off power (in and out of ground effect),
the directional control shall afford at least the following yaw dis-
placements in the first second following initiation of pedal displace~
ment from trim:
Class I (less than 2,500 lbs. gross weight): 6° for l-inch pedal
displacement, and 20° for full pedal displacement.
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Paragraph 3.3.6, It shall be possible to execute a complete turn in
each direction while hovering over a given spot at the maximum over-
load gross weight or at take~off power (in and out of ground effect),

in a wind of at least 20 knots for class I.....To insure adequate margin
of control during these maneuvers, sufficient control shall remain at
the most critical azimuth angle relative to the wind, in order that
when starting at zero yawing velocity at this angle, the application of
full directional control in the critical direction results in a corres-
ponding yaw displacement of at least 6° in the first second for class I
«eseoshelicopters,

Paragraph 3.3.7. The sensitivity of the helicopter to directional
control deflection, as indicated by the maximum rate of yaw per inch of
sudden pedal displacemsnt from trim while hovering shall not be so high
as to cause a tendency for the pilot to overcontrol unintentionally. In
any case, the sensitivity shall be considered excessive if the yaw dis-
placement is greater than 50° in the first second following a sudden
pedal displacement of 1 inch from trim while hovering at the lightesat

service loading.

Zxperience with currently operating tip~powered helicopters indicates

that the requirements specified in Paragraphs 3.3.5 and 3.3.6 of Reference 15
cannot consistently be met with a rudder. A tail rotor is required if com=

pliance is considered necessary.

While it may not be considered essential to meet the above requirements

in the case of the one~man helicopter, it should be noted that the directional
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control afforded by a rudder, immediately after flare-out, is apt to be inade=
quate., Vhen landing in rough terrain, or under battle conditions, the desir-
ability of positive directional control at all times may require use of a tail
rotor,

Judging by the results of the tests reported in Reference & on the
partial full scale model of a one~man helicopter, the critical angles from the
standpoint of directional control occur at azimuth angles of about 90° with
respect to the wind. Since a rather large landing gear (for a one=man helicopter)
was used in the tests, and since this landing gear appeared to affect consider=-
ably the directional characteristics, it is not considered desirable here to
discuss tail rotor requirements in terms of the requirement 3.3.6 above, It is
somewhat simpler to discuss these requirements in terms of the requirement 3.3.7;
that is, to determine the maximum desirable rather than the minimm tail rotor
thrust required.

The Iz of a one-man helicopter will be of the order of 10 slug-ft2 at
overload and 5 slug-ft2 at the lightest service gross weight. For the light
welght condition, a yawing moment of approximately 10 ft-lbs will result in a
yaw displacement of 50° from trim in one second, Thus it appears that the tail
rotor of the one-man helicopter should not produce more than 10 ft=lbs of yaw=
ing moment for one inch of pedal displacement. Assuming a pedal travel of 3
inches and a tail rotor arm of 5 feet, this corresponds to a tail rotor thrust
at full displacement of 6 lbs.

Figure 33 presents design data in the form of blade chord versus maximum
thrust for a two-bladed tail rotor , with selected values of tip speed and blade
radius, Assuming that a maximm thrust of L 1lbs is found to be more than adequate

= R rm—————— T



Report No. EX=0-2

CONFIDENTIAL

T T T 3 23289 PR v 12231
44 T T
sae i T4 113 . e . T o84
] [ HT : I35 ) . Hit
t H T i : + ; .
L ] { BEE i : : i1
18t : BE8es : :f:
i Bgass razEssgnpysuags suan + :
] 3.4 et g
1 n;mx :w T
H + .t
{HEd 5
4 B4 Ieady b
H s HE F23 5t
t 3 e
B o t
=S58 T !
joge s PR 123
gH- HiHy i :
I RIS + t
b v ++H .«;.
L i
[5essa 38} Js ¥ v s
gt H ; ;
Jresia wd N L
SHERHAHEE T
b HT IS I s
£ T o c_.:x 3538
44 444 ¢ ?! [BaE M
3t w g :
t : & B3 .
~ e s as gy N, SN\ . ]
O et ,tmmmn..v u..u 301 i
m s %r it =3 -
s mrzw w 23d} I3 . Y e
L] 4 i3t a3t B T . e
m o poe xu.l.u wm BRI S T
<l & Wv w i E g
& . + N = =
34 383 £33 553 = bt
" i HHwo o ishb 1 3.
ey 22 dje eiih : '
o s 2 231 B2 H
= o = mmm Tl m B
: Balt ¥ :
o = Wu b4 g B -y
s ..-MJ (=] p”.r.?w SN m
(3 Y A o
5 B HisE R SN AR £
5 ol R et 2ht H
= (5] Be32dseIaisgas: :132t BN i 3
[4) H ey o1 ~H giey m
] b pRast i g REE s
& 3 L1, Saes
Spge 1 =
& T = +
hessad Il SRS
8. e r .
reo JIE :
Ao,
il R
e -
H i ﬁwww n..?
3 r«u)— —
+
L 3530 o
Frotis e
e He TR R
Bagasgunwy SR E) et by
: TS e
p54 7 7 L ppmime et §asds
= o Loy Sisan pagal
2253 22251 real R3] FEI A 1asky D!
T bt [Cons aunns sadeg shwel =t
e e s et S E L] e g Shge S50
R S asbas 32"
. -

89

CONFIDENTIAL




Report, Nos EX-0-2 CONFIDENTIAL

to meet the requirement 3,3.6, without exceeding requirement 3.3.7, it is seen
from Figure 33 that for a tip speed of 500 fps and a radius of 6 inches the
required chord is only 1/2 inch. For a one~bladed rotor a 1 inch chord is
required. Although such blades are extremely small, and therefore apt to be
flimsy, the extremely high rpm (9560 rpm) renders the rotor dangerous to neare
by personnel, A material which would fracture on impact with the body, without

damage to the body, is desirable in this application. At this time no suitable
material has been suggested,
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Te §gged Governing of Rotor
a. Rotor Speed Governor

A rotor speed governor which maintains constant rotor rpm throughout
the operating power range, regardless of collective pitch setting, would be
especially desirable for the one=man helicopter. Presumably the unit would
respond to changes in centrifugal force by changes in fuel flow,

A drawback to this type of control is the fact that it would be in-
operative power-off, In the case of tip-mounted drives, with high fuel rates
and low endurance, the possibility of running out of fuel in flight is con-
siderable,

The following characteristics are desirable for the unit:

(1) Mechanical simplicity and light weight

(2) High gain (sensitive to small changes in rpm)

(3) Absence of hunting. To meet items (2) and (3) it is prob-
ably necessary to provide tanticipation', that is, response to
acceleration as well as rpm, This will most probably conflict
with item (1),

(L) Stable system - this probably requires 'anticipation' response

also,
(5) Absence of govermor droop ~ that is, change in rpm maintained
by governor with change in power demand.
(6) Provision of over-riding throttle control, so that ship may
be controlled if governor malfunctions.

Obviously, a system meeting the above requirements must be more complex

than the pitch-power scheme discussed in Paragraph 1.,7.b. This is especially

CONFIDENTIAL 51
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true if the t'anticipation! requirement is met. If possible electronic systems

must be avoided, due to the ruggedness generally required of all systems in the

one-man helicopter,

b. Correlation Between Collective Pitch and Throttle Controls

Since a helicopter will fly in any one of several stabilized flight
conditions at the same value of collective pitch (the local angle of attack at
the blades will, of course, vary with the rotor attitude, velocity and thrust),
it would be difficult to provide a correlating mechanism which would accurately
correlate in all conditions of flight, It is found in practice, however, that
gsystems which are designed so that the rotor speed will remain substantially
constant for rapid and large changes in collective pitch will, for reasgons sub-
sequently discussed, prove generally satisfactory.

The power required by the rotor is a function of blade collective pitch
angle and rotor inflow conditions., Blade collective pitch is determined by
the pilot; rotor inflow by the rotor operating conditions. Whereas the pilot
can change the collective pitch setting through large angles in time intervals
substantially less than a second, changes in blade angle of attack resulting
from inflow changes due to variation in rotor attitude or velocity generally
take several seconds to become important. Accordingly, if correlation is pro-
vided between collective pitch and throttle so that changes in collective pitch
will produce simultaneous scheduled adjustment of throttle, the pilot will have
sufficient time in all other conditions to adjust the throttle as required to
maintain constant rotor speed.

Figure 3l presents curves of net rotor horsepower required versus col-

lective pitch for a one-man helicopter in hovering, and forward speeds of 60

92 CONFIDENTIAL
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PITCH-POWER SCHEDULE PROPOSED FOR A TYPICAL ONF~MAN HELICOPTER

( ‘ (Baged on Pitch-Power Relationships of Figure 3L)
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and 120 fps, at selected disk loadings, Similar data is presented for vertical
climb at a disk loading of 2 psf. All curves are for a constant value of tip
speed. The rotor radius corresponds to a design gross weight of LOO 1lbs at a
disk loading of 2 psf. The range of disk loadings 1.0 to 3.0 psf will cover
amply any range likely to be encountered in operation with this machine.
Figure 35 presents an operating envelope which includes all the points covered
in Figure 3l except that corresponding to a disk loading of 1 psf at a forward
speed of 120 fps. (The envelope cuts across the 120 fps line at approximately
1.5 psf, which corresponds to a 25% reduction in gross weight from design gross,
and is therefore apt to be close to the minimum attainable disk loading.) A
schedule is shown in Figure 35 which will permit a correlation between pitch and
power such that small adjustments in throttle setting will be required to main=-
tain constant tip speed. The schedule could be obtained by means of a cam,
operated by the collective pitch stick, and connected to the throttle mechanism.
While this gystem does not provide automatic governing of rotor speed for
any flight configuration, it provides a light and simple correlation between
pitch and power which will serve to aid the pilot. As pointed out in Paragraph
3.b. , a speed governor with suitable characteristics is 1likely to be compli=-
cated and expensive, and also somewhat heavy. Use of a pitch-power schedule
obviously requires monitoring from the pilot, although for the design conditions
throttle adjustment should be small, However, a rotor speed indicator will be

necessary with this scheme.
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8. Autorotative Parameters for the One-lan Helicopter

Paragraph 3.4.5 of Reference 15 reads as follows:

The helicopter shall be capable of entering into autorotation at

all speeds from 20 knots rearward to maximum forward speed. The trans-

ition from powered flight to autorotative flight shall be established

smoothly and with adequate controllability and with a minimum loss of
altitude, It shall be possible to make this transition safely when
initiation of the necessary manual collective pitch control motion has
been delayed for at least 2 seconds following loss of power. 4t no time
during this maneuver shall the rotor speed fall below a safe minimum
autorotative value (as distinct from power=-on values.)

No method has been devised for predicting the ability of a helicopter to
meet the above requirements, and in general helicopters in operation today can-
not meet the 2-second requirement. R. A, Wagner has suggested that a criterion
of the ability of a helicopter to transition safely into autorotation after
power failure is given by the ratio of rotor kinetic energy to gross weight, and
that a minimm value for this ratio should be 75. (It may be noted that the value
is approximately 80 for the Sikorsky R-5. This machine does not meet the 2=seconc
requirement, but it has autorotation characteristics which are generally consid-
ered to be acceptable,)

Another criterion which may be used for comparison with current designs
is the ratio of rotor kinetic energy to hovering power required, given by:

2
Irm

1
B 1010 il

Effectively, K' represents the number of seconds of energy dissipation,

at the rate required to maintain hovering out of the ground effect, corresponding
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to the stored kinetic energy of the rotor at a given (constant) tip speed.
If X' = 5, it is seen that in the first second after loss of power the
kinetic energy loss in the rotor is approximately 207, resulting in a reduc-
tion of 107 in tip speed. If X' = 1,0, a 10 reduction in tip speed would
take place in approximately 1/5 second, assuming energy dissipation at the
rate required to maintain hovering out of the ground effect.

Figure 36 presents curves of the autorotation parameters suggested
above, versus tip speed, for selected values of Il and blade tip weight.
It is seen that for a blade having Il =5 slug-ft2 s and zero tip weight
(corresponding to the blades of a one-man helicopter having a two-bladed
rotor and geared drive), the ratio I;m?/?w is below the minimum desirable

value of 75 for all tip speeds up to 625 fps. Thus, in addition to the desira=

bility of improving the rate damping (and therefore the stability) of the
geared machine by means of tip weights, this also improves power~off autoro=
tation characteristics of the configuration.,

As a matter of interest, some actual values of the autorotation
parameters are presented on Figure 36, in a table., The influence of tip-
weight is illustrated in the comparison between the geared and the rocket-
powered one-man helicopter (although the lydrogen peroxide rockets used are
probably no more than one-half the weight of the corresponding ethylene oxide
rocket). The influence of tip speed is shown by the comparison between the
ramjet and pulse jet machines, especially since the pulse jet powerplants

are about 50% heavier than the ramjets.
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SECTION IIT - POWERPLANTS AND FUELS IN RELATION TO TIE OMNE~-:AN HELICOPTER

1, Availability of Powerplants

a. Ratings Required

The power requirements for the one-man helicopter are as follows:
LO=50 horsepower for the geared drive configurations,

Jet thrust to develop 30~35 hp in the tip drive con-
figurations, corresponding to a jet thrust of 15-17.5
1b thrust per engine on the tips of a two-bladed rotor
at tip speed of 550 fps.

b. Availabilit
There are no operationally proven powervlants available at this time

in the above ratings.

The following summarizes the present state of the art in small aireraft

nowerplants:

(1) Reciprocating - several small two-stroke cycle engines
for target drones or powered glider
applications. None modified for use
with helicopter,

(2) Turbine =~ none available in the rating required.

(3) Ramjet = units in ratings 30=40 1lbs thrust have
been successfully used in helicopter
application. No information available
on smaller powerplants.,

(L) Pulse Jet = units having 35=45 1lbs thrust ratings
have been successfully used in helicopter
application. No information available
on smaller powerplants.

(5) Rocket = some work has been done with gas generators
using Hydrogen Peroxide and Ethylene Oxide
as fuel, Considerably more work remains
to be done before powerplants are acceptable,
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(6) Ram Rocket = some basic research work has been done
with Methyl Acetylene (Propyne), and
Ethylene Oxide fuels, While the con=
figuration is promising, tests have not
proceeded to the point where specific
fuel consurption data may be approxi-

mated,

lost test work has been done

with engines having L/D (length/diameter)
ratios of 8:1 to 12:1, Tor use with a
one-man helicopter, operating at the

blade tip under a 15007-2000g centrifugal
loading, L/D ratios should be considerably

less,

A small amount of test work has

been done with L/D ratios of 3:1.

c. Characteristics of Various Powerplants

(1) Reciprocating

The following is generally applicable to current aircraft engines

in the 4O~50 hp class (all data is, of course,approximate):

Dry weight

Installed weight (with cooling
provision and accessories)

Drive system weight
Operating cycle/rpm
Fuel rate - 1b/hp/hr

Reduction ratio engine/rotor

1 1b/hp

1.3 = 1.5 1b/hp

5 = .7 1v/hp
2-stroke /1,000~6000
.80 - 1,2

8:1 to 12:1

From the above it is seen that a reciprocating engine installed,

plus drive system, will weigh about 2 1b/hp.

4 L0 nhp engine, plus

drive, then weighs 80 1b, with airframe 180-200 1b, Obviously, an

adequate landing gear must be provided, so that total airframe

weight is likely to be well in excess of 200 1b. (A point not

generally appreciated is that motorcycle engines have specific weights

(1b/hp) much higher than those of target drone engines,)
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(2) Turbine

While some small high=output reciprocating engines are in
operation, no small turbine in the class required is available,
other than a small 80 hp auxiliary powerplant. This unit weighs
about 2 1b/hp, and does not appear suitable for modification to
helicopter use. It may be assumed that weight and nerformance
of a geared turbine suitable for use with the one-man helicopter
will not be notably different from that of the high-output re=-
ciprocating engine described above. The gear ratio is likely to
be of the order of LO:1,

(3) Ramjet
Two helicopters in the 750-1000 1b. class have been operated

extensively in the U.S. While the engine is extremely simple in
conception, development of a reliable, approved type powerplant is
time~consuming and expensive. The strong centrifugal field and
high operating temperatures introduce structural problems, particu-
larly in connection with the flameholder assembly. The centrifugal
field introduces fuel distribution problems, The high air velocities
introduce flameholding difficulties, and relighting in the air can
become a problem., The engine retention for a typical one~-man heli-
copter must be built to withstand a continuous centrifugal load of
about 9000 pounds, and yet must be sufficiently small to fit neatly
into a suitable rotor blade,
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Fuel rate for a small ramjet engine suitable for a one=man
helicopter is likely to be of the order of 12 pounds per lb=thrust
per hour.

The above development problems have been encountered, and to
some extent overcome, in current ramjet-powered helicopters. Two
major operating problems still exist with the powerplant. These
are:

High engine cold drag, resulting in minimum
power~off descent rates approximately double
those of 'clean' rotor configurations.

Necessity for mechanically bringing rotor un
to speed (about 100~150 rpm) before engine
will start.

Among suggestions put forward for reducing cold drag in power-
off descent are:

Use of 'eyelids' and/or tail-cone, While cold drag
may be reduced about 50% by means such as these,

no workable system has been »roposed for achieving

them. Such problems as actuation (under high cen=

trifugal loading), and suitable fairing of the de=-

vices when not in use, are not easily solved, The

weight and cost penalties do not appear worth while
in the one=man helicopter.

Use of a flat (rectangular) engine cross section.
This has obvious structural as well as aerodynamic
advantages, No reliable information is available,
since very little has been done with the configura-
tion. The problems of nozzle location, fuel dis-
tribution and mixing in the centrifugal field appear
to be gevere. There may be difficulties with warping
of the structure.

It has been suggested that solid rockets be used to bring the rotor up

to speed, One experiment of this nature has been reported, but the

rotor speed developsd was only about one~half of that predicted. It
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was felt that the rockets required for a successful start would

be too heavy to justify their use. Obviously,from both the tactical
and weight standpoint, use of solid rocket start has drawbacks in
connection with the one-man helicopter. A hand-cranked start appears

to be feasible, but burdensome to the pilot.

(4) Pulse Jet

Many of the problems discussed in relation to the ramjet are

somewhat alleviated in the case of the pulse jet, due to the low
centrifugal loading on the powerplant. It has proved necessary to
operate the engine at tip speeds less than 40O fps; while this is
an advantage from the standpoint of engine structure, it requires
relatively large-chord blades to avoid blade tip stall, The engine
length introduces structural problems; a length-diameter ratio in
excess of 6:1 must be maintained, resulting in engine length, for
the one-man helicopter, in excess of two feet (see Figure 37
For a 40O pound machine with a disk loading of 2.0, centrifugal
load factor on the engine is of the order of 600, compared to about
380 on a current pulse jet helicopter.

The inlet valves are the only moving parts in the pulse jet,
and represent the most frequent source of engine failure.

Cold drag data for the pulse jet has not been published, but
power-off descent rates are probably increased about 50% from !clean

blade'! values by the pulse jet, as compared to about 100% for the
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ramjet.

At rated thrust, the TSFC of the pulse jet is considerably
better than that of the ramjet., However, TSFC is approximately
constant for the ramjet over a large power rangs, whereas TSFC of
the pulse jet increases considerably with reduction in output.
Cruise fuel rates, in terms of BSFC, are approximately equal in
ramjet and pulse jet.

The pulse jet may be started by means of a small compressed
air charge., The air bottle may be recharged by means of a rotor

driven pump, once the rotor is started,

(5) Rocket

(a) Discussion

It is pointed out in Reference 3 that, providing a
suitable powerplant can be developed, either the tip-mounted
rocket or ram rocket using liquid fuel offer ths most promise
in connection with the portable one-man helicoptgr. This is
because the airframe weight appears to be lighter with these
configurations than with any other. Paragraphs III.5.b. and
III.5.c, present some comments on the rocket and ram rocket
nowerplants, Paragraph III.6. presents a brief discussion

of suitable fuels for each of these powerplants,

(b) Liquid Rocket

The rocket powerplant considered here is a device for

decomposing a liquid monopropellant fuel, and for creating jet
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thrust by exhausting the products of decomposition to atmos=
phere through a suitable nozzle or nozzles, located at the
blade tip. An interesting characteristic of this type of
powerplant is that the jet thrust is not directly affected
by tip speed, However, the fuel specific impulse, at
relatively low decomposition chamber pressures is somewhat
affected by chamber pressure; if this pressure is built up
by centrifugal pumping along the blade, the spmecific impulse
will be to a small extent affected by rotor rpm, though in
a range which is likely to be well below rated rpm.

Two possible methods for decomposition of the fuel
are considered., These are by catalytic bed and by heat.
Only relatively unstable fuels can be decomposed by a
catalyst = this is at once the advantage and the
danger of these fuels, (As pointed out in the discussion
on fuels, Hydrogen Peroxide decomposes in contact with
most organic impurities, and thus presents a fire hazard.)
The majority of monoprowellant fuels which are prordising
in connection with the one-man helicopter are not readily,
if at all, subject to catalytic action, and require heat
for decomposition., Thus, design of a liquid monopropellant
rocket involves development of suitable catalytic bed methods,
or of a suitable heat source, as applicable.

It is probably generally true that use of a fuel which

may be catalyzed results in a lighter rocket vnowerplant,
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and one that is less complicated than the configuration
requiring heat decomposition., There are, however, reasons

for preferring the latter. 1In the first place, the tip

weight required for stability reasons is likely (in the

one~-man helicopter) to be greater than that provided by a
catalytic type rocket, Second,the most promising monopropellant
using heat decomposition (Ethylene Oxide) has a specific ime
pulse at least 20% greater than that of the most promising
monopropellant using catalytic decomposition (Hydrogen Peroxide).
Third, Ethylene has a considerable advantage over Hydrogen

Peroxide in terms of safety, availability, and cost,

(6) Ram Rockst

The ram rocket may be crudely described as a combination of rocket
and ramjet powerplants. The rocket nozzles are placed just aft of the
diffuser of a shell similar to that of a ramjet. The products of de-
composition of the monopropellant fuel are mixed with air entering the
shell, and burned, In contrast to gasoline or jet fuels used in the
ramjet, the products of decomposition have considerable energy in the
form of heat and pressure, which in the optimum design is used as a heat
pump to augrent the mass flow of air into the shell. For this reason,
the aerothermodynamic efficiency of a ram rocket is superior to that of
a ramjet of the same rated output, even though the ramjet fuel has
considerably greater heat content than the monopropellant fuel (for

example, gasoline has 50% more heat content than Ethylene Oxide). It should

also be noted that the decomposition products of Hydrogen Peroxide, being
steam, are not combustible, and therefore this fuel is not suitable for

use in a ram rocket.
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Obviously, at low rotor tip speeds the engine operates almost
entirely as a rocket; at very high tip speeds the operation approaches
that of a tip-mounted ramjet. Even assuming that the cruise specific
fuel consumption of the ram rocket is no better than that of the ramjet,
the ram rocket has two obvious advantages for a helicopter nowerplant
when compared to the ramjet, These are a smaller shell, resulting in
a reduction of cold drag of the shell; and the ability to accelerate
from zero rotor speed without external means. (The lower shell cold

drag will reduce the power-off descent rates of the machine,)

d. Liquid Rocket Fuels
Providing a suitable powerplant can be developed, the tip-mounted liquid

rocket engine offers the most promise as a powerplant for the one~man helicopter.
This is because airframe weight appears to be lighter for this configuration
than for any other.

Table I presents characteristics of several monopropellant fuels that
have been suggested for use in the tip-mounted rocket.

The use of Hydrogen Peroxide is not recommended, Since the fuel will
ignite spontaneously on contact with most organiec impurities, it presents a
danger in storage, in transport, or in the fuel system, Careful 'passivation!
of the fuel gystem is required before the fuel may be used, A leak may result
in fire or explosion. The major advantage of Hydrogen Peroxide as a rocket
fuel is indeed the fact that decomposition is easily initiated by a variety
of catalysts. The products of decomposition, being steam and oxygen, cannot
be afterburned, so that this fuel is not suitable for a ram rocket,
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Ethylene Oxide appears to be the most promising monoprovmellant fuel,
with handling characteristics little different from those of gasoline., Its
heat content is, however, only about 60% of that of gasoline, and it must be
stored under pressure (50-100 psia) to prevent vaporization. Heat release in
decomposition is about 9% of total fuel heat content, Not only is the fuel
relatively safe to handle, with a rocket performance about 20% better than
that of Hydrogen Peroxide, but it is also available in great quantities at a
relatively low price. The products of decomposition are very suitable for
ram rocket operation.

Propyl Nitrate has characteristics similar to those of Ethylene Oxide
but, in general, somewhat inferior. Cost is about three times higher, Isp
about 10% lower. Its major advantage is that no pressurization is required
for storage or in a fuel tank. It is suitable for a ram rocket fuel, since
the decomposition products burn in air,

Methyl Acetylene may be decomposed by heat and is therefore useable
as a monopropellant fuel. The products of decomposition form a thick, greasy
smoke, and are highly inflammable. The heat content of the fuel is high
(about the same as gasoline), but the fuel is at present quite expensive. Re~
quirement for large quantities would no doubt bring down the price considerably.

The fuel is very promising for use with the ram rocket, due to the high heat

content.

e, Relative Sizes of Various Tip-lounted Powerplants for the Onhe=-

Man Helicopter

Figure 37 shows, approximately, relative sizes of pulse jet, ramjet

and Ethylene Oxide rocket powerplants for a typical one-man helicopter, with

CONFDENTIAL |

PRI




CONFIDENTIAL Report Yo, EX-0-2

corresponding blade chords for these configurations. The ram rocket is
not shown; however, preliminary calculations indicate that a diameter of
about three inches and a length of nine to twelve inches would be required
for the ram rocket shell,
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DATA OY IIO:IOPROPELLANT FUELS SUTTABLE rQit USI

IN TIP-:OUNTED ROCKETS OR RAM ROCKETS

HYDROGEN
B PEROYIDE
Empirical formula H202
Products of decomposition H20 + 02
leat of decorposition (BThU/1b) 590
Exhaust temperature Op 1360
Auto. decomposition temperature °p 60
Heating value - BThU/1b -

Isp ~ Secs (Iax) (as monopropellant) 140 (90% pure)

I, (probable in cruise) 120-130

I, - ram rocket rerformance (estimated) -

freezin; temnerature 90% pure - °p 12

60=70% pure - °F -L0
Tanor Pressure at 68°F -
Freoducer

ETHYLENT
OJ - ﬁ E‘

G190,
cO + CHh

1065
1750
1060

11925
170-180

160-170

350

=170

22 psia

Buffalo Electro Chemical Union Carbon

Cost=tank car lots LO cents 1b
Reaction initiated by catalyst
Weizht - 1b/cu £t 11.6
Storage requirements vented

Flarmability lower limit at standard
atmospheric pressure

substances

Suitable fuel for ram rocket No
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and Carbide
18 cents 1b
heat

7.2

sealed

1060°F
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